We study the joint effect of disorder and Coulomb interaction screening on the exciton spectra in two-dimensional (2D) structures. These can be van der Waals structures or heterostructures of organic (polymeric) semiconductors as well as inorganic substances like transition metal dichalcogenides. We consider 2D screened hydrogenic problem with Rytova-Keldysh interaction by means of so-called fractional Scrödinger equation. Our main finding is that above synergy between screening and disorder either destroys the exciton (strong screening) or promote the creation of a bound state, leading to its collapse in the extreme case. Our second finding is energy levels crossing, i.e. the degeneracy (with respect to index [Formula: see text]) of the exciton eigenenergies at certain discrete value of screening radius. Latter effects may also be related to the quantum manifestations of chaotic exciton behavior in above 2D semiconductor structures. Hence, they should be considered in device applications, where the interplay between dielectric screening and disorder is important.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8184999 | PMC |
http://dx.doi.org/10.1038/s41598-021-91414-w | DOI Listing |
Angew Chem Int Ed Engl
January 2025
Jiangsu University, Institute for Energy Research, No. 301, Xuefu Road, 212013, Zhenjiang, CHINA.
Various organic and inorganic reagents containing N/O functional groups have been developed as additives to aqueous electrolytes (e.g., ZnSO4, ZS) of zinc-ion batteries (ZIBs).
View Article and Find Full Text PDFAngew Chem Int Ed Engl
January 2025
Southern University of Science and Technology, Department of Mechanical and Energy Engineering, CHINA.
Localized high-concentration electrolytes (LHCEs) exhibit good performance in lithium metal batteries. However, understanding how the intermolecular interactions between solvents and diluents regulate the solvation structure and interfacial layer structure remains limited. Here, we reported an LHCE in which strong hydrogen bonding between diluents and solvents alters the conformation and polarity of "flexible" solvent molecules, thereby effectively regulating the solvation structure of Li+ ion and promoting the formation of robust electrode interfaces.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
Institute of Materials Research and Engineering, Agency for Science Technology and Research, 2 Fusionopolis Way, 08-03 Innovis, Singapore 138634, Singapore.
Thermoelectric properties of conducting polymers typically suffer from molecular chain disordering, as charge transport is predominantly controlled by morphology. This is especially more problematic when counterions are introduced to tune the carrier concentration for optimal thermoelectric performance, which disturbs the morphology further. In this work, we introduce a new avenue for enhancing thermoelectric properties without needing to regulate the morphology, namely, by controlling the coulombic interaction between polarons and counterions.
View Article and Find Full Text PDFBioorg Chem
January 2025
Department of Chemistry, St Berchmans College (Autonomous), Changanassery, Kerala 686101, India; Centre for Theoretical and Computational Chemistry, St Berchmans College (Autonomous), Changanassery, Kerala 686101, India. Electronic address:
In this study, three novel derivatives of benzo[b]thiophene-2-carbaldehyde (BTAP1, BTAP2, and BTAP3) were successfully synthesized and comprehensively characterized using spectroscopic techniques including FTIR, UV-VIS, HNMR, and CNMR. Thermal analysis through TGA and DTA demonstrated remarkable thermal stability with a maximum threshold at 270 °C. Spectroscopic investigations revealed π → π* transitions in all compounds, attributed to the conjugated system comprising benzothiophene rings connected to bromophenyl/ aminophenyl/phenol rings via α, β-unsaturated ketone bridges.
View Article and Find Full Text PDFLangmuir
January 2025
School of Chemical Engineering, The University of Queensland, Brisbane, QLD 4072, Australia.
Ofloxacin, a commonly prescribed antibiotic, raises serious environmental concerns due to its persistence in aquatic systems. This study offers new insights into the environmental behavior of ofloxacin and its interactions with carbon-based adsorbents with the aim of enhancing our understanding of its removal mechanisms via adsorption processes. Using a comprehensive computational approach, we analyzed the speciation, pK values, and solubility of ofloxacin across various pH conditions, accounting for all four microspecies, including the often-overlooked neutral form.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!