Variations in photoreceptor throughput to mouse visual cortex and the unique effects on tuning.

Sci Rep

Department of Psychology, University of Texas At Austin, 108 E. Dean Keeton, Austin, TX, 78712, USA.

Published: June 2021

Visual input to primary visual cortex (V1) depends on highly adaptive filtering in the retina. In turn, isolation of V1 computations requires experimental control of retinal adaptation to infer its spatio-temporal-chromatic output. Here, we measure the balance of input to mouse V1, in the anesthetized setup, from the three main photoreceptor opsins-M-opsin, S-opsin, and rhodopsin-as a function of two stimulus dimensions. The first dimension is the level of light adaptation within the mesopic range, which governs the balance of rod and cone inputs to cortex. The second stimulus dimension is retinotopic position, which governs the balance of S- and M-cone opsin input due to the opsin expression gradient in the retina. The fitted model predicts opsin input under arbitrary lighting environments, which provides a much-needed handle on in-vivo studies of the mouse visual system. We use it here to reveal that V1 is rod-mediated in common laboratory settings yet cone-mediated in natural daylight. Next, we compare functional properties of V1 under rod and cone-mediated inputs. The results show that cone-mediated V1 responds to 2.5-fold higher temporal frequencies than rod-mediated V1. Furthermore, cone-mediated V1 has smaller receptive fields, yet similar spatial frequency tuning. V1 responses in rod-deficient (Gnat1) mice confirm that the effects are due to differences in photoreceptor opsin contribution.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8184960PMC
http://dx.doi.org/10.1038/s41598-021-90650-4DOI Listing

Publication Analysis

Top Keywords

mouse visual
8
visual cortex
8
governs balance
8
opsin input
8
variations photoreceptor
4
photoreceptor throughput
4
throughput mouse
4
visual
4
cortex unique
4
unique effects
4

Similar Publications

Tissue clearing combined with high-resolution confocal imaging is a cutting-edge approach for dissecting the three-dimensional (3D) architecture of tissues and deciphering cellular spatial interactions under physiological and pathological conditions. Deciphering the spatial interaction of leptin receptor-expressing (LepR) stromal cells with other compartments in the bone marrow is crucial for a deeper understanding of the stem cell niche and the skeletal tissue. In this study, we introduce an optimized protocol for the 3D analysis of skeletal tissues, enabling the visualization of hematopoietic and stromal cells, especially LepR stromal cells, within optically cleared bone hemisections.

View Article and Find Full Text PDF

Lysosome-targeted dual-locked NIR fluorescent probe for visualization of HS and viscosity in drug-induced liver injury and tumor models.

Anal Chim Acta

February 2025

Department of Radiology, Changhai Hospital, Naval Medical University, Changhai Road 168, Shanghai 200433, China. Electronic address:

Background: Lysosomes, as an indispensable subcellular organelle have numerous physiological functions closely associated with HS and viscosity, and accurate assessment of HS/viscosity fluctuations in lysosomes is essential for gaining a comprehensive understanding of lysosome-related physiological activities and pathological processes. The previous single-response fluorescent probes for either HS or viscosity alone have the potential to generate "false positive" signals in a complex biological environment. In contrast, dual-locked probes can simultaneously respond to multiple targets simultaneously, which could effectively eliminate this defect.

View Article and Find Full Text PDF

Dahuang-Gancao Decoction Ameliorates Testosterone-Induced Androgenetic Alopecia in Mice.

J Ethnopharmacol

January 2025

Eye School of Chengdu University of Traditional Chinese Medicine. Ineye Hospital of Chengdu University of Traditional Chinese Medicine, KeyLaboratory of Sichuan Province Ophthalmopathy Prevention & Cureand Visual Function Protection with Traditional Chinese Medicine Laboratory. Electronic address:

Ethnopharmacological Relevance: Dahuang-Gancao decoction (DGD) is a traditional Chinese medicinal formula that is recorded in the Synopsis of the Golden Chamber, and is widely used to treat damp-heat in the body. Since the pathological factors of androgenetic alopecia (AGA) also reflect damp-heat blockage, DGD has great potential for the treatment of AGA and has been used effectively in clinical practice.

Aim Of The Study: The aim of the study was to investigate whether external application of DGD could promote the activation and proliferation of hair follicle stem cells (HFSCs) and improve AGA through the Wnt/β-catenin pathway.

View Article and Find Full Text PDF

Induction of age-related ocular disorders in a mouse model of pulmonary fibrosis.

Exp Eye Res

January 2025

State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, 270 Xueyuan Road, Wenzhou, Zhejiang 325027, P. R. China. Electronic address:

Idiopathic pulmonary fibrosis (IPF) is a progressive lung disease linked to aging. This study investigates potential connections between IPF and age-related eye problems using a bleomycin-induced IPF mouse model. Intratracheal administration of bleomycin induces rapid lung injury in mice, followed by IPF with characteristics of cellular senescence.

View Article and Find Full Text PDF

Retinopathy of prematurity (ROP) is a proliferative retinal vascular disorder that critically affects the visual development of premature infants, potentially leading to irreversible vision loss or even blindness. Despite its significance, the underlying mechanisms of this disease remain insufficiently understood. In this study, we utilized the oxygen-induced retinopathy (OIR) mouse model and conducted endothelial functional assays to explore the role of Sterol Regulatory Element-Binding Protein 1 (SREBF1) in ROP pathogenesis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!