The effects of confounding factors on gene expression analysis have been extensively studied following the introduction of high-throughput microarrays and subsequently RNA sequencing. In contrast, there is a lack of equivalent analysis and tools for RNA splicing. Here we first assess the effect of confounders on both expression and splicing quantifications in two large public RNA-Seq datasets (TARGET, ENCODE). We show quantification of splicing variations are affected at least as much as those of gene expression, revealing unwanted sources of variations in both datasets. Next, we develop MOCCASIN, a method to correct the effect of both known and unknown confounders on RNA splicing quantification and demonstrate MOCCASIN's effectiveness on both synthetic and real data. Code, synthetic and corrected datasets are all made available as resources.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8184769PMC
http://dx.doi.org/10.1038/s41467-021-23608-9DOI Listing

Publication Analysis

Top Keywords

rna splicing
12
moccasin method
8
unknown confounders
8
confounders rna
8
gene expression
8
splicing
5
method correcting
4
correcting unknown
4
rna
4
splicing analysis
4

Similar Publications

Background: TP53 variant classification benefits from the availability of large-scale functional data for missense variants generated using cDNA-based assays. However, absence of comprehensive splicing assay data for TP53 confounds the classification of the subset of predicted missense and synonymous variants that are also predicted to alter splicing. Our study aimed to generate and apply splicing assay data for a prioritised group of 59 TP53 predicted missense or synonymous variants that are also predicted to affect splicing by either SpliceAI or MaxEntScan.

View Article and Find Full Text PDF

Sequence-based machine-learning models trained on genomics data improve genetic variant interpretation by providing functional predictions describing their impact on the cis-regulatory code. However, current tools do not predict RNA-seq expression profiles because of modeling challenges. Here, we introduce Borzoi, a model that learns to predict cell-type-specific and tissue-specific RNA-seq coverage from DNA sequence.

View Article and Find Full Text PDF

Osteoporosis, recognised as a metabolic disorder, has emerged as a significant burden on global health. Although available treatments have made considerable advancements, they remain inadequately addressed. In recent years, the role of epigenetic mechanisms in skeletal disorders has garnered substantial attention, particularly concerning mA RNA modification.

View Article and Find Full Text PDF

Fine mapping of the Chilli veinal mottle virus resistance 4 (cvr4) gene in pepper (Capsicum annuum L.).

Theor Appl Genet

January 2025

Department of Agriculture, Forestry and Bioresources, Research Institute of Agriculture and Life Sciences, Plant Genomics and Breeding Institute, College of Agriculture and Life Sciences, Seoul National University, Seoul, 08826, Republic of Korea.

The single recessive Chilli veinal mottle virus resistance locus, cvr4, was fine-mapped in pepper through bulked segregant RNA sequencing combined with gene silencing analysis. Chilli veinal mottle virus (ChiVMV) is a widespread pathogen affecting the production of peppers (Capsicum annuum L.) in Asia and Africa.

View Article and Find Full Text PDF

Pervasive RNA-binding protein enrichment on TAD boundaries regulates TAD organization.

Nucleic Acids Res

January 2025

Department of Orthopaedics and Traumatology, Li Ka Shing Institute of Health Sciences, Chinese University of Hong Kong, Hong Kong SAR, China.

Mammalian genome is hierarchically organized by CTCF and cohesin through loop extrusion mechanism to facilitate the organization of topologically associating domains (TADs). Mounting evidence suggests additional factors/mechanisms exist to orchestrate TAD formation and maintenance. In this study, we investigate the potential role of RNA-binding proteins (RBPs) in TAD organization.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!