Depression is one of the leading causes of disability worldwide and a major contributor to the global burden of disease, yet the cellular and molecular etiology of depression remain largely unknown. Major Depressive Disorder (MDD) is associated with a variety of chronic physical inflammatory and autoimmune disorders, and mood disorders may act synergistically with other medical disorders to worsen patient outcomes. Here, we outline the neuroimmune complement, explore the evidence for altered immune system function in MDD, and present some of the potential mechanisms by which immune cells and molecules may drive the onset and course of MDD. These include pro-inflammatory signaling, alterations in the hypothalamic-pituitary-adrenal axis, dysregulation of the serotonergic and noradrenergic neurotransmitter systems, neuroinflammation, and meningeal immune dysfunction. Finally, we discuss the interactions between current antidepressants and the immune system and propose the possibility of immunomodulatory drugs as potential novel antidepressant treatments.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8877598 | PMC |
http://dx.doi.org/10.1016/bs.apha.2021.03.004 | DOI Listing |
Gastric Cancer
January 2025
Department of Medical Oncology, Hospital Clinico Universitario, INCLIVA, Biomedical Research Institute, University of Valencia, Avenida Menendez Pelayo nro 4 accesorio, Valencia, Spain.
Introduction: Gastric cancer (GC) burden is currently evolving with regional differences associated with complex behavioural, environmental, and genetic risk factors. The LEGACy study is a Horizon 2020-funded multi-institutional research project conducted prospectively to provide comprehensive data on the tumour biological characteristics of gastroesophageal cancer from European and LATAM countries.
Material And Methods: Treatment-naïve advanced gastroesophageal adenocarcinoma patients were prospectively recruited in seven European and LATAM countries.
Discov Oncol
January 2025
Department of General Surgery, The Second Affiliated Hospital of the Air Force Medical University, Xi'an, 710038, China.
A common digestive system cancer with a dismal prognosis and a high death rate globally is breast cancer (BRCA). BRCA recurrence, metastasis, and medication resistance are all significantly impacted by cancer stem cells (CSCs). However, the relationship between CSCs and the tumor microenvironment in BRCA individuals remains unknown, and this information is critically needed.
View Article and Find Full Text PDFCommun Biol
January 2025
Department of Ecology and Evolutionary Biology, University of Colorado Boulder, Boulder, CO, USA.
Symbioses are major drivers of organismal diversification and phenotypic innovation. However, how long-term symbioses shape whole genome evolution in metazoans is still underexplored. Here, we use a giant clam (Tridacna maxima) genome to demonstrate how symbiosis has left complex signatures in an animal's genome.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Laboratory Medicine and Pathology, University of Minnesota School of Medicine, 420 Delaware St SE, MMC 609, Minneapolis, MN, 55455, USA.
Within ovarian cancer research, patient-derived xenograft (PDX) models recapitulate histologic features and genomic aberrations found in original tumors. However, conflicting data from published studies have demonstrated significant transcriptional differences between PDXs and original tumors, challenging the fidelity of these models. We employed a quantitative mass spectrometry-based proteomic approach coupled with generation of patient-specific databases using RNA-seq data to investigate the proteogenomic landscape of serially-passaged PDX models established from two patients with distinct subtypes of ovarian cancer.
View Article and Find Full Text PDFNat Commun
January 2025
Molecular and Cellular Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, 111 T. W. Alexander Drive, Research Triangle Park, NC, 27709, USA.
Coronaviruses evade detection by the host immune system with the help of the endoribonuclease Nsp15, which regulates levels of viral double stranded RNA by cleaving 3' of uridine (U). While prior structural data shows that to cleave double stranded RNA, Nsp15's target U must be flipped out of the helix, it is not yet understood whether Nsp15 initiates flipping or captures spontaneously flipped bases. We address this gap by designing fluorinated double stranded RNA substrates that allow us to directly relate a U's sequence context to both its tendency to spontaneously flip and its susceptibility to cleavage by Nsp15.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!