Vascular endothelial growth factor tyrosine kinase inhibitors (VEGF-TKIs) have been the mainstay of treatment for patients with advanced renal cell carcinoma (RCC). Despite its early promising results in decreasing or delaying the progression of RCC in patients, VEGF-TKIs have provided modest benefits in terms of disease-free progression, as 70% of the patients who initially respond to the treatment later develop drug resistance, with 30% of the patients innately resistant to VEGF-TKIs. In the past decade, several molecular and genetic mechanisms of VEGF-TKI resistance have been reported. One of the mechanisms of VEGF-TKIs is inhibition of the classical angiogenesis pathway. However, recent studies have shown the restoration of an alternative angiogenesis pathway in modulating resistance. Further, in the last 5 years, immune checkpoint inhibitors (ICIs) have revolutionized RCC treatment. Although some patients exhibit potent responses, a non-negligible number of patients are innately resistant or develop resistance within a few months to ICI therapy. Hence, an understanding of the mechanisms of VEGF-TKI and ICI resistance will help in formulating useful knowledge about developing effective treatment strategies for patients with advanced RCC. In this article, we review recent findings on the emerging understanding of RCC pathology, VEGF-TKI and ICI resistance mechanisms, and potential avenues to overcome these resistance mechanisms through rationally designed combination therapies.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8183071PMC
http://dx.doi.org/10.1186/s13046-021-01961-3DOI Listing

Publication Analysis

Top Keywords

immune checkpoint
8
checkpoint inhibitors
8
renal cell
8
cell carcinoma
8
treatment patients
8
patients advanced
8
patients innately
8
innately resistant
8
mechanisms vegf-tki
8
angiogenesis pathway
8

Similar Publications

Tumor-specific HLA class I expression is required for cytotoxic T-cell elimination of cancer cells expressing tumor-associated or neo-antigens. Cancers downregulate antigen presentation to avoid adaptive immunity. The highly polymorphic nature of the genes encoding these proteins, coupled with quaternary-structure changes after formalin fixation, complicate detection by immunohistochemistry.

View Article and Find Full Text PDF

Eruptive keratoacanthoma secondary to immune checkpoint inhibitors: a narrative review.

Arch Dermatol Res

January 2025

Department of Dermatology, College of Medicine, The Ohio State University Wexner Medical Center, 540 Officenter Place, Columbus, OH, 43230, USA.

The use of immunotherapy is an emerging treatment option for advanced malignancies. Cutaneous adverse events following cancer immunotherapy are well-documented in the literature. The rarer cutaneous adverse effects are less characterized, including eruptive keratoacanthomas (KA).

View Article and Find Full Text PDF

Purpose: Pancreatic ductal adenocarcinoma (PDAC) is an aggressive malignancy with poor response to chemotherapy. High-frequency microsatellite instability (MSI-H) is a rare biological phenomenon in conventional PDAC, being more frequently described in tumors with medullary or mucinous features.

Methods And Results: In this manuscript, we report the case of a patient with an MSI-H pancreatic carcinoma with medullary features (medullary carcinoma of the pancreas-MCP) that achieved a complete pathological response after neoadjuvant modified FOLFIRINOX.

View Article and Find Full Text PDF

Previous studies have demonstrated the safety and efficacy of a live-attenuated glycoprotein G (gG) deletion mutant vaccine strain of ILTV (∆gG-ILTV). In the current study, transcriptional profiles of chicken tracheal organ cultures (TOCs), 24 h post inoculation with ∆gG-ILTV or the gG-expressing parent wild-type strain, CSW-1 ILTV were explored and compared with the mock-infected TOCs using RNA-seq analysis. Transcriptomes of the vaccine and wild-type ILTV were also compared with each other.

View Article and Find Full Text PDF

Cardamonin anticancer effects through the modulation of the tumor immune microenvironment in triple-negative breast cancer cells.

Am J Cancer Res

December 2024

Division of Pharmaceutical Sciences, College of Pharmacy and Pharmaceutical Sciences, Institute of Public Health, Florida A&M University Tallahassee, FL 32307, The United States.

The tumor immune microenvironment (TIME) plays a critical role in cancer development and response to immunotherapy. Immune checkpoint inhibitors aim to reverse the immunosuppressive effects of the TIME, but their success has been limited. Immunotherapy directed at PD-1/PD-L1 has been widely employed, yielding positive results.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!