Background: Even when microbial communities vary wildly in their taxonomic composition, their functional composition is often surprisingly stable. This suggests that a functional perspective could provide much deeper insight into the principles governing microbiome assembly. Much work to date analyzing the functional composition of microbial communities, however, relies heavily on inference from genomic features. Unfortunately, output from these methods can be hard to interpret and often suffers from relatively high error rates.
Results: We built and analyzed a domain-specific microbial trait database from known microbe-trait pairs recorded in the literature to better understand the functional composition of the human microbiome. Using a combination of phylogentically conscious machine learning tools and a network science approach, we were able to link particular traits to areas of the human body, discover traits that determine the range of body areas a microbe can inhabit, and uncover drivers of metabolic breadth.
Conclusions: Domain-specific trait databases are an effective compromise between noisy methods to infer complex traits from genomic data and exhaustive, expensive attempts at database curation from the literature that do not focus on any one subset of taxa. They provide an accurate account of microbial traits and, by limiting the number of taxa considered, are feasible to build within a reasonable time-frame. We present a database specific for the human microbiome, in the hopes that this will prove useful for research into the functional composition of human-associated microbial communities.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8186035 | PMC |
http://dx.doi.org/10.1186/s12859-021-04216-2 | DOI Listing |
World J Microbiol Biotechnol
January 2025
Area of Biochemistry and Molecular Biology, OneHealth-UR Research Group, University of La Rioja, 26006, Logroño, Spain.
Mammalian milk contains a variety of complex bioactive and nutritional components and microorganisms. These microorganisms have diverse compositions and functional roles that impact host health and disease pathophysiology, especially mastitis. The advent and use of high throughput omics technologies, including metagenomics, metatranscriptomics, metaproteomics, metametabolomics, as well as culturomics in milk microbiome studies suggest strong relationships between host phenotype and milk microbiome signatures in mastitis.
View Article and Find Full Text PDFSleep Breath
January 2025
Department of Pulmonary and Critical Care Medicine, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, No.1 Da Hua Road, Dong Dan, Dongcheng District, Beijing, 100730, PR China.
Purpose: To investigate the relationship between obstructive sleep apnea hypopnea syndrome (OSAHS) severity and fat, bone, and muscle indices.
Methods: This study included 102 patients with OSAHS and retrospectively reviewed their physical examination data. All patients underwent polysomnography, body composition analysis, dual-energy X-ray absorptiometry, computed tomography (CT) and blood test.
Arch Dermatol Res
January 2025
Department of Dermatology, The University of Sydney at Royal Prince Alfred Hospital, Missenden Rd, NSW , Camperdown, 2050, Australia.
Melanoma is an immunogenic tumor. The melanoma tumor immune microenvironment (TIME) is made up of a heterogenous mix of both immune and non-immune cells as well as a multitude of signaling molecules. The interactions between tumor cells, immune cells and signaling molecules affect tumor progression and therapeutic responses.
View Article and Find Full Text PDFAppl Microbiol Biotechnol
January 2025
Process Synthesis and Process Dynamics, Max Planck Institute for Dynamics of Complex Technical Systems, Magdeburg, Germany.
The production of biodegradable and biobased polymers is one way to overcome the present plastic pollution while using cheap and abundant feedstocks. Polyhydroxyalkanoates are a promising class of biopolymers that can be produced by various microorganisms. Within the production process, batch-to-batch variation occurs due to changing feedstock composition when using waste streams, slightly different starting conditions, or biological variance of the microorganisms.
View Article and Find Full Text PDFCurr Microbiol
January 2025
Department of Microbiology, Faculty of Science, Kasetsart University, Chatuchak, Bangkok, 10900, Thailand.
An aerobic, Gram-stain-positive, motile, coccus-shaped actinomycete, designated strain LSe6-4, was isolated from leaves of sea purslane (Sesuvium portulacastrum L.) in Thailand and subjected to a polyphasic taxonomic studies. Growth of the strain occurred at temperatures between 15 and 38 °C, and with NaCl concentrations 0-13%.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!