Global focus on sustainability has accelerated research into alternative non-animal sources of food protein and functional food ingredients. Amphiphilic peptides represent a class of promising biomolecules to replace chemical emulsifiers in food emulsions. In contrast to traditional trial-and-error enzymatic hydrolysis, this study utilizes a bottom-up approach combining quantitative proteomics, bioinformatics prediction, and functional validation to identify novel emulsifier peptides from seaweed, methanotrophic bacteria, and potatoes. In vitro functional validation reveal that all protein sources contained embedded novel emulsifier peptides comparable to or better than sodium caseinate (CAS). Thus, peptides efficiently reduced oil-water interfacial tension and generated physically stable emulsions with higher net zeta potential and smaller droplet sizes than CAS. In silico structure modelling provided further insight on peptide structure and the link to emulsifying potential. This study clearly demonstrates the potential and broad applicability of the bottom-up approach for identification of abundant and potent emulsifier peptides.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.foodchem.2021.130217DOI Listing

Publication Analysis

Top Keywords

emulsifier peptides
16
seaweed methanotrophic
8
methanotrophic bacteria
8
quantitative proteomics
8
proteomics bioinformatics
8
bottom-up approach
8
functional validation
8
novel emulsifier
8
peptides
5
emulsifier
4

Similar Publications

Sex-Based Differences in the In Vitro Digestibility of MCT Emulsions Stabilized by Various Emulsifiers.

Foods

January 2025

Laboratory of Chemistry of Foods and Bioactives, Department of Biotechnology and Food Engineering, Technion-Israel Institute of Technology, Haifa 320001, Israel.

Consumer sex influences phenotypic differences in digestive functions that may underlie variations in food disintegration. This study used an in vitro digestion model to test the hypothesis that emulsions follow distinct digestive pathways in men and women. Model emulsions were prepared using medium-chain triglycerides stabilized by beta-lactoglobulin, alpha-lactalbumin, or lactoferrin, and by three non-protein emulsifiers: Tween 80, lecithin, and sucrose esters.

View Article and Find Full Text PDF

New Insights on Strain 1B Surface-Active Biomolecules: Gordofactin Properties.

Molecules

December 2024

Unidade de Bioenergia e Biorrefinarias, LNEG-Laboratório Nacional de Energia e Geologia, Estrada do Paço do Lumiar 22, 1649-038 Lisboa, Portugal.

Biosurfactants/bioemulsifiers (BSs/BEs) can be defined as surface-active biomolecules produced by microorganisms with a broad range of applications. In recent years, due to their unique properties like biodegradability, specificity, low toxicity, and relative ease of preparation, these biomolecules have attracted wide interest as an eco-friendly alternative for several industrial sectors, escalating global microbial BS/BE market growth. Recently, strain 1B, a bacterium with significant biotechnological potential, well known for its biodesulfurizing properties, carotenoid production, and broad catabolic range, was described as a BS/BE producer.

View Article and Find Full Text PDF

Enzymatic grafting of 5-O-succinyl erythorbyl myristate onto chitosan to improve its emulsifying properties.

Carbohydr Polym

March 2025

Department of Agricultural Biotechnology, Seoul National University, Seoul 08826, Republic of Korea; Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Republic of Korea; Center for Agricultural Microorganism and Enzyme, Seoul National University, Seoul 08826, Republic of Korea; Center for Food and Bioconvergence, Seoul National University, Seoul 08826, Republic of Korea. Electronic address:

Chitosan (CS) is a versatile polysaccharide with numerous inherent biological activity, while the lack of amphiphilicity limits its application in emulsion-based systems. In this study, erythorbyl myristate (EM) with interfacial activity was chemically modified to 5-O-succinyl EM (EMS) and grafted onto CS to improve the emulsifying properties. The grafting reaction was conducted by the catalysis of protease, with the progress of the reaction monitored by HPLC analysis and UV absorbance measurement.

View Article and Find Full Text PDF

This report is a pioneering bibliometric analysis of chia proteins as well as a review of the current/future themes of chia proteins. Reports were selected from the Scopus database, and networks of co-word occurrence, co-cited references, and the bibliographic coupling of documents were obtained. The health benefits and functional properties of chia proteins/peptides are current themes while the research of chia peptides is an emergent theme.

View Article and Find Full Text PDF

Purification, microstructure, functional properties and antioxidant activity of peptides from Chinese pond turtle hydrolysate.

Food Sci Biotechnol

January 2025

State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122 Jiangsu Province China.

Chinese pond turtle muscle peptide's molecular features, purification, structural characteristics, and antioxidant activity were investigated. The Flavourzyme hydrolysate demonstrated greater relative crystallinity (37.53%) than other hydrolysates using X-ray diffraction.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!