Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Background: Multimorbidity (> 2 conditions) increases the risk of adverse outcomes and challenges health care systems for patients with acute coronary syndrome (ACS). These complications may be partially attributed to ACS clinical care which is driven by single-disease-based practice guidelines; current guidelines do not consider multimorbidity.
Objectives: To identify multimorbidity phenotypes (combinations of conditions) with suspected ACS. We hypothesized that: 1) subgroups of patients with similar multimorbidity phenotypes could be identified, 2) classes would differ according to diagnosis, and 3) class membership would differ by sex, age, functional status, family history, and discharge diagnosis.
Methods: This was a secondary analysis of data from a large multi-site clinical study of patients with suspected ACS. Conditions were determined by items on the Charlson Comorbidity Index and the ACS Patient Information Questionnaire. Latent class analysis was used to identify phenotypes.
Results: The sample (n = 935) was predominantly male (68%) and middle-aged (mean= 59 years). Four multimorbidity phenotypes were identified: 1) high multimorbidity (Class 1) included hyperlipidemia, hypertension (HTN), obesity, diabetes, and respiratory disorders (COPD or asthma); 2) low multimorbidity (Class 2) included only obesity; 3) cardiovascular multimorbidity (Class 3) included HTN, hyperlipidemia, and coronary heart disease; and 4) cardio-oncology multimorbidity (Class 4) included HTN, hyperlipidemia, and cancer. Patients ruled-in for ACS primarily clustered in Classes 3 and 4 (OR 2.82, 95% CI 1.95-4.05, p = 0.001 and OR 1.76, 95% CI 1.13-2.74, p = 0.01).
Conclusion: Identifying and understanding multimorbidity phenotypes may assist with risk-stratification and better triage of high-risk patients in the emergency department.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8328942 | PMC |
http://dx.doi.org/10.1016/j.hrtlng.2021.05.006 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!