Synthesis and biological activity of conformationally restricted indole-based inhibitors of neurotropic alphavirus replication: Generation of a three-dimensional pharmacophore.

Bioorg Med Chem Lett

Vahlteich Medicinal Chemistry Core, University of Michigan, Ann Arbor, MI 48109, United States; Department of Medicinal Chemistry, College of Pharmacy, University of Michigan, Ann Arbor, MI 48109, United States. Electronic address:

Published: August 2021

We have previously reported the development of indole-based CNS-active antivirals for the treatment of neurotropic alphavirus infection, but further optimization is impeded by a lack of knowledge of the molecular target and binding site. Herein we describe the design, synthesis and evaluation of a series of conformationally restricted analogues with the dual objectives of improving potency/selectivity and identifying the most bioactive conformation. Although this campaign was only modestly successful at improving potency, the sharply defined SAR of the rigid analogs enabled the definition of a three-dimensional pharmacophore, which we believe will be of value in further analog design and virtual screening for alternative antiviral leads.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8272561PMC
http://dx.doi.org/10.1016/j.bmcl.2021.128171DOI Listing

Publication Analysis

Top Keywords

conformationally restricted
8
neurotropic alphavirus
8
three-dimensional pharmacophore
8
synthesis biological
4
biological activity
4
activity conformationally
4
restricted indole-based
4
indole-based inhibitors
4
inhibitors neurotropic
4
alphavirus replication
4

Similar Publications

Short-length peptides are used as therapeutics due to their high target specificity and low toxicity; for example, peptides are designed for targeting the interaction between oncogenic protein p53 and E3 ubiquitin ligase MDM2. These peptide therapeutics form a class of successful inhibitors. To design such peptide-based inhibitors, stapling is one of the methods in which amino acid side chains are stitched together to get conformationally rigid peptides, ensuring effective binding to their partners.

View Article and Find Full Text PDF
Article Synopsis
  • Macrocycles are seen as effective tools for targeting hard-to-reach proteins inside cells, but improving them from initial linear structures is still a work in progress.
  • Researchers studied linker modification to enhance macrocycle properties, focusing on FKBP51 and producing over 140 versions with different linkers.
  • They discovered that these modifications led to better affinity, stability, and solubility of the macrocycles compared to earlier models, and emphasized the importance of understanding the 3D shapes of these molecules in drug development.
View Article and Find Full Text PDF

The intrinsically disordered carboxy-terminal domain (CTD) of the largest subunit of RNA Polymerase II (RNAPII) consists of multiple tandem repeats of the consensus heptapeptide Y1-S2-P3-T4-S5-P6-S7. The CTD promotes liquid-liquid phase-separation (LLPS) of RNAPII in vivo. However, understanding the role of the conserved heptad residues in LLPS is hampered by the lack of direct biochemical characterization of the CTD.

View Article and Find Full Text PDF

Cobalt-catalyzed conformationally restricted alkylarylation enables divergent access to Csp-rich N-heterocycles.

Chem Sci

September 2024

Key Laboratory of Organic Synthesis of Jiangsu Province, MOE Key Laboratory of Geriatric Diseases and Immunology, Suzhou Key Laboratory of Pathogen Bioscience and Anti-infective Medicine, College of Chemistry, Chemical Engineering and Materials Science, Soochow University Suzhou 215123 China

Article Synopsis
  • Csp-rich N-heterocycles are gaining attention in drug discovery due to their unique structure and spatial orientation, surpassing traditional aromatic compounds.
  • A new cobalt-catalyzed alkylarylation method allows for the efficient creation of diverse Csp-rich N-hetero(spiro)cycles using simple conditions, achieving over 70 different structures.
  • The methodology shows great promise for medicinal chemistry, as it offers broad applicability with good compatibility for functional groups and potential for developing pharmaceutically active molecules.
View Article and Find Full Text PDF

The Hsp90 chaperone is an ATPase enzyme composed of two copies of a three-domain subunit. Hsp90 stabilizes and activates a diverse array of regulatory proteins. Substrates are bound and released by the middle domain through a clamping cycle involving conformational transitions between a dynamic open state and a compact conformationally restricted closed state.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!