To enhance drug utilization and reduce their side effects, the strategy of "tumor-triggered targeting" was introduced to fabricate dual-pH-sensitive chitosan (CHI)/mesoporous silica nanoparticle (MSN)-based anticancer drug delivery system (DDS) in this work. Model drug doxorubicin hydrochloride (DOX) was loaded in MSN, which was modified with benzimidazole (Bz) group. Then chitosan-graft-β-cyclodextrin (CHI-g-CD) was applied as the "gatekeeper" to cover MSN through host-guest interaction between β-CD and Bz. After being coated with targeting peptide adamantane-glycine-arginine-glycine-aspartic acid-serine (Ad-GRGDS), methoxy poly(ethylene glycol) benzaldehyde (mPEG-CHO) was finally grafted on CHI through the pH-sensitive benzoic imine bond. Due to the dynamic protection of PEG, the obtained carriers were "stealthy" at pH 7.4, but could reveal the shielded targeting peptide and the positive charge of CHI in the weakly acidic environment achieved a "tumor-triggered targeting". Inside cancer cells, the interaction between β-CD and Bz group could be destroyed due to the lower pH, resulted in DOX release. Both in vitro and in vivo studies proved the DDS could targeting induce cancer cell apoptosis, inhibit tumor growth, and reduce the cytotoxicity of DOX against normal cells. It is expected that the system named DOX@MSN-CHI-RGD-PEG could be a potential choice for cancer therapy.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ijbiomac.2021.06.004 | DOI Listing |
ACS Appl Bio Mater
November 2022
Department of Chemistry, Institute of Graduate Studies, Ankara Haci Bayram Veli University, 06900Ankara, Turkey.
Drug-conjugated nanoassemblies potentiate the efficiency of anticancer drugs through the advantages of high drug-loading capacity and passive/active targeting ability in cancer therapy. This study describes the synthesis of gemcitabine (Gem) and cisplatin (cisPt) dual-drug-functionalized glyco-nanoassemblies (GNs) for anticancer drug delivery systems. It also investigates the pH-triggered drug delivery of the conventional anticancer drug cisPt.
View Article and Find Full Text PDFMaterials (Basel)
July 2022
National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei University of Technology, Wuhan 430068, China.
Coating nanosized anticancer drug delivery systems (DDSs) with poly(ethylene glycol) (PEG), the so-called PEGylation, has been proven an effective method to enhance hydrophilicity, aqueous dispersivity, and stability of DDSs. What is more, as PEG has the lowest level of protein absorption of any known polymer, PEGylation can reduce the clearance of DDSs by the mononuclear phagocyte system (MPS) and prolong their blood circulation time in vivo. However, the "stealthy" characteristic of PEG also diminishes the uptake of DDSs by cancer cells, which may reduce drug utilization.
View Article and Find Full Text PDFJ Mater Chem B
July 2022
State Key Laboratory of Refractories and Metallurgy, Key Laboratory of Coal Conversion & New Carbon Materials of Hubei Province, School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, P. R. China.
Tumor-triggered targeting ammonium bicarbonate (TTABC) liposomes were proposed to improve the uptake of ammonium bicarbonate (ABC) liposomes in tumor cells and retain their long circulation in our previous study. However, it must be solved how to precisely release the loaded drugs of the TTABC liposomes into tumor cells. In addition, synergistic multimodal therapy could result in better tumor treatment outcomes than monomodal chemotherapy.
View Article and Find Full Text PDFACS Biomater Sci Eng
February 2022
Department of Thoracic Surgery, The First Affiliated Hospital of Nanchang University, 17 Yongwaizheng Street, Nanchang, Jiangxi, 330006, China.
In this study, the self-assembling strategy was used to synthesize a therapeutic and diagnostic nanosystem for tumor-triggered targeting dual-mode near-infrared fluorescence (NIRF)/magnetic resonance (MR) imaging and photodynamic therapy applications. This theranostic nanosystem was synthesized based on the self-assembling of the short peptide (PLGVRGRGDC) and the gadolinium chelator (diethylenetriamine pentaacetic acid) functionalized amphiphilic DSPE-PEG, followed by loading with the insoluble photosensitizer therapeutic agent chlorin e6 (Ce6). The formed theranostic nanosystem can accumulate in the matrix metalloproteinase 2 (MMP2) rich tumor sites guided by the enhanced permeability and retention effect and MMP2-substrate peptide (PLGVR) targeting.
View Article and Find Full Text PDFInt J Biol Macromol
July 2021
Ministry-of-Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei Key Laboratory of Polymer Materials, Hubei University, Wuhan 430062, China. Electronic address:
To enhance drug utilization and reduce their side effects, the strategy of "tumor-triggered targeting" was introduced to fabricate dual-pH-sensitive chitosan (CHI)/mesoporous silica nanoparticle (MSN)-based anticancer drug delivery system (DDS) in this work. Model drug doxorubicin hydrochloride (DOX) was loaded in MSN, which was modified with benzimidazole (Bz) group. Then chitosan-graft-β-cyclodextrin (CHI-g-CD) was applied as the "gatekeeper" to cover MSN through host-guest interaction between β-CD and Bz.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!