Background: 2-Furanones have attracted great attention due to their biological activities. They also have the ability to be converted to several biologically active heterocyclic and nonheterocyclic compounds, especially as anti-cancer agents.

Objectives: This research aims to share in the development process of novel cytotoxic agents by synthesizing certain 2-furanone derivatives and using them as starting materials for the preparation of novel heterocyclic and non-heterocyclic compounds, then testing the synthesized derivatives for their anti-cancer activities.

Methods: All the newly synthesized compounds were fully characterized by elemental analysis, IR, Mass, and 1H-NMR spectroscopy. 18 synthesized compounds were selected by National Cancer Institute (NCI) for testing against 60 cell lines, and the active compound was tested as MAPK14 and VEGFR2-inhibitor using Staurosporine as standard.

Results: Compound 3a showed the higher activity against several cell lines; Leukemia (SR), Non- Small Cell Lung Cancer (NCI-H460), colon cancer (HCT-116), ovarian cancer (OVCAR-4), renal cancer (786-0, ACHN and UO-31) and, finally breast cancer (T-47D). It also has better inhibition activity against MAPK14 than the used reference.

Conclusion: Compound 3a has promising anti-cancer activities compared to the used standards and may need further modification and investigations.

Download full-text PDF

Source
http://dx.doi.org/10.2174/1573406417666210604103135DOI Listing

Publication Analysis

Top Keywords

2-furanone derivatives
8
compounds testing
8
synthesized compounds
8
cell lines
8
cancer
6
compounds
5
utility 2-furanone
4
derivatives synthesis
4
synthesis heterocyclic
4
heterocyclic compounds
4

Similar Publications

Identification of a novel butenolide signal system to regulate high production of tylosin in Streptomyces fradiae.

Appl Microbiol Biotechnol

January 2025

State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China.

Identifying hormone-like quorum sensing (QS) molecules in streptomycetes is challenging due to low production levels but is essential for understanding secondary metabolite biosynthesis and morphological differentiation. This work reports the discovery of a novel γ-butenolide-type signaling molecule (SFB1) via overexpressing its biosynthetic gene (orf18) in Streptomyces fradiae. SFB1 was found to be essential for production of tylosin through dissociating the binding of its receptor TylP (a transcriptional repressor) to target genes, thus activating the expression of tylosin biosynthetic gene cluster (tyl).

View Article and Find Full Text PDF

Diabetes has become a global epidemic, affecting even the younger people on an alarming scale. Inhibiting intestinal α-glucosidase is one of the key approaches to managing type 2 diabetes (T2D). In the present study, phenolic compounds (PCs) produced by endophytic fungi as potential α-glucosidase inhibitors (AGIs) are explored through ADMET profiling, molecular docking, and molecular dynamics (MD) Simulations.

View Article and Find Full Text PDF

Undescribed cytotoxic butenolides; asperterreunolides A-E, isolated from endophytic fungus Aspergillus terreus derived from Artemisia arborescens L. supported with in silico study.

Phytochemistry

April 2025

National Center for Natural Products Research, School of Pharmacy, The University of Mississippi, University, MS, 38677, USA; Division of Pharmacognosy, Department of BioMolecular Sciences, School of Pharmacy, The University of Mississippi, University, MS, 38677, USA. Electronic address:

Article Synopsis
  • The ethyl acetate extract from the endophytic fungus Aspergillus terreus found in Artemisia arborescens L. led to the discovery of five new compounds, asperterreunolides A-E, along with a known metabolite, butyrolactone IV.
  • Using advanced spectroscopic techniques, the researchers determined the structures and the absolute configurations of these metabolites.
  • All isolated compounds exhibited significant cytotoxic effects against certain cancer cell lines, and molecular docking studies suggested their potential mechanism of action as inhibitors of type IIA topoisomerase.
View Article and Find Full Text PDF

Four new macrolides, spirosnuolides A-D (-, respectively), were discovered from the termite nest-derived sp. INHA29. Spirosnuolides A-D are 18-membered macrolides sharing an embedded [6,6]-spiroketal functionality inside the macrocycle and are conjugated with structurally uncommon side chains featuring cyclopentenone, 1,4-benzoquinone, hydroxyfuroic acid, or butenolide moieties.

View Article and Find Full Text PDF

Pharmacology and molecular modeling studies of sulfoxaflor, flupyradifurone and neonicotinoids on the human neuronal α7 nicotinic acetylcholine receptor.

Toxicol Appl Pharmacol

November 2024

Université d'Orléans, USC INRAE 1328, Laboratoire Physiologie, Ecologie et Environnement (P2E), 1 rue de Chartres, 45067 Orléans, France; Institut Universitaire de France (IUF), 1 rue Descartes, 75005 Paris, France. Electronic address:

We conducted electrophysiological and molecular docking studies using a heterologous expression system (Xenopus oocytes) to compare the effects of four neonicotinoids (acetamiprid, imidacloprid, clothianidin and thiamethoxam), one sulfoximine, (sulfoxaflor), and one butenolide (flupyradifurone), on human α7 neuronal nicotinic acetylcholine receptors (nAChRs). All neonicotinoids (except thiamethoxam), as well as the recently introduced nAChR competitive modulators, flupyradifurone and sulfoxaflor, appear to be weaker agonists than acetylcholine. Two mutations in loop C (E211N and E211P) and one mutation in loop D (Q79K), known to be involved in the binding properties of neonicotinoids were introduced to the α7 wild type.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!