Multimodal chromatography is a powerful approach for purifying proteins that uses ligands containing multiple modes of interaction. Recent studies have shown that selectivity in multimodal chromatographic separations is a function of the ligand structure and geometry. Here, we performed molecular dynamics simulations to explore how the ligand structure and geometry affect ligand-water interactions and how these differences in solution affect the nature of protein-ligand interactions. Our investigation focused on three chromatography ligands: Capto MMC, Nuvia cPrime, and Prototype 4, a structural variant of Nuvia cPrime. First, the solvation characteristics of each ligand were quantified via three metrics: average water density, fluctuations, and residence time. We then explored how solvation was perturbed when the ligand was bound to the protein surface and found that the probability of the phenyl ring dewetting followed the order: Capto MMC > Prototype 4 > Nuvia cPrime. To explore how these differences in dewetting affect protein-ligand interactions, we calculated the probability of each ligand binding to different types of residues on the protein surface and found that the probability of binding to a hydrophobic residue followed the same order as the dewetting behavior. This study illustrates the role that wetting and dewetting play in modulating protein-ligand interactions.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.jpcb.1c01549 | DOI Listing |
Naunyn Schmiedebergs Arch Pharmacol
January 2025
Department of Chemistry, Faculty of Science, Cairo University, Giza, 12613, Egypt.
Piperazine-based compounds have garnered significant attention due to their notable biological and pharmacological activities, making them essential in fine chemical and pharmaceutical applications. In this study, we managed to synthesize a novel hybrid bis-cyanoacrylamide bearing the piperazine core via phenoxymethyl linker and incorporating sulphamethoxazole moiety. The novel compound was fully characterized using different spectral data including 1H-NMR, C-NMR, and FTIR spectroscopy.
View Article and Find Full Text PDFFront Pharmacol
January 2025
Global Security Computing Applications Division, Lawrence Livermore National Laboratory, Livermore, CA, United States.
Introduction: Recent advances in 3D structure-based deep learning approaches demonstrate improved accuracy in predicting protein-ligand binding affinity in drug discovery. These methods complement physics-based computational modeling such as molecular docking for virtual high-throughput screening. Despite recent advances and improved predictive performance, most methods in this category primarily rely on utilizing co-crystal complex structures and experimentally measured binding affinities as both input and output data for model training.
View Article and Find Full Text PDFBMC Chem
January 2025
Department of Biochemistry, University of Johannesburg, Auckland Park Campus, Cnr Kingsway Avenue and University Road, Auckland, Park, PO Box 524, Johannesburg, 2006, South Africa.
Malaria is the extensive health concern in sub-Saharan Africa, with Plasmodium falciparum being the most lethal strain. The continued emergence of drug-resistant P. falciparum advocates for the development of new antimalarials.
View Article and Find Full Text PDFExpert Rev Proteomics
January 2025
Biological and Environmental Science & Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Saudi Arabia.
Introduction: The DeepMind's AlphaFold (AF) has revolutionized biomedical research by providing both experts and non-experts with an invaluable tool for predicting protein structures. However, while AF is highly effective for predicting structures of rigid and globular proteins, it is not able to fully capture the dynamics, conformational variability, and interactions of proteins with ligands and other biomacromolecules.
Areas Covered: In this review, we present a comprehensive overview of the latest advancements in 3D model predictions for biomacromolecules using AF.
Int J Biol Macromol
January 2025
Department of Thoracic Surgery, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai 200443, China. Electronic address:
Though warangalone has shown anticancer properties against breast cancer cells, its colloidal stability and therapeutic index ought to be improved using a potential strategy, especially via protein-based (nano)carriers. In this research, transferrin was used as a plasma protein for the development of the warangalone-transferrin NPs. To investigate the mechanism underlying the formation of this complex, the interaction between warangalone and transferrin, as well as transferrin NPs, was analyzed using spectroscopic methods.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!