To investigate the relationship of lung function, airflow limitation, and lung injury in silica-exposed workers, we analyzed the clinical, functional, and radiologic data of 94 long-term workers exposed in the granite industry or in foundries. The subjects were divided into four subsets based on chest roentgenogram and CT scan of the thorax: group 1 consisted of 21 subjects with category 0 chest roentgenogram and category 0 CT scan; group 2, 28 subjects with category E 1 on both chest roentgenogram and CT scan; group 3, 18 subjects with category E 1 on chest roentgenogram but with coalescence or conglomeration or both seen only on CT scan; and group 4, 27 subjects with category E 1 and coalescence or conglomeration or both on roentgenogram and CT scan. The groups did not differ in terms of age, height, cigarette smoking, or years of exposure. Lung volumes were significantly reduced only in group 4 (p less than 0.05). Lung compliance, diffusion capacity, and the rest-exercise P(A-a)O2 gradient were reduced in groups 3 and 4 (p less than 0.05). Expiratory flow rates were significantly reduced in groups 2, 3, and 4, with the lowest values in group 4. The expiratory flow rates in group 3 were significantly lower in group 3 than in group 2. These results support the concept that airflow in silica-exposed workers is significantly reduced when the disease is detectable on simple chest roentgenogram; coalescence or conglomeration or both on chest roentgenogram or CT scan is associated with significant loss of lung volumes, gas exchange function, and increased airflow obstruction.

Download full-text PDF

Source
http://dx.doi.org/10.1378/chest.94.3.539DOI Listing

Publication Analysis

Top Keywords

chest roentgenogram
24
roentgenogram scan
16
subjects category
16
silica-exposed workers
12
category chest
12
scan group
12
group subjects
12
coalescence conglomeration
12
group
9
lung function
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!