Ultrafast, high sensitive, low cost photodetectors operating at room temperature sensitive from the deep-ultraviolet to mid-infrared region remain a significant challenge in optoelectronics. Achievements in traditional semiconductors using cryogenic operation and complicated growth processes prevent the cost-effective and practical application of broadband detectors. Alternative methods towards high-performance photodetectors, hybrid graphene-semiconductor colloidal quantum dots have been intensively explored. However, the operation of these photodetectors has been limited by the spectral bandwidth and response time. Here, we have demonstrated hybrid photodetectors operating from the deep-ultraviolet to the mid-infrared region with high sensitivity and ultrafast response by coupling graphene with a p-type semiconductor photosensitizer, nitrogen-doped Ta2O5 thin film. Photons with energy higher than the energy of the defect centers release holes from neutral acceptors. The holes are transferred into graphene, leaving behind ionized acceptors. Due to the advantage of two-dimensional heterostructure including homogeneous thickness, extending in a two-dimensional plane, large contact area between the N-Ta2O5 thin film and graphene, and the high mobility of carriers in graphene, holes are transferred rapidly to graphene and recirculated during the long lifetime of ionized acceptors. The photodetectors achieve a high photo-responsivity (up to 3.0 × 106 A W-1), ultrafast rise time (faster than 20 ns), and a specific detectivity (up to ∼2.2 × 1012 Jones). The work provides a method for achieving high-performance optoelectronics operating in the deep-ultraviolet to mid-infrared region.

Download full-text PDF

Source
http://dx.doi.org/10.1039/d1nr01572aDOI Listing

Publication Analysis

Top Keywords

deep-ultraviolet mid-infrared
16
mid-infrared region
12
photodetectors operating
8
operating deep-ultraviolet
8
thin film
8
holes transferred
8
ionized acceptors
8
high
5
photodetectors
5
graphene
5

Similar Publications

The ability to perform broadband optical spectroscopy with subdiffraction-limit resolution is highly sought-after for a wide range of critical applications. However, sophisticated near-field techniques are currently required to achieve this goal. We bypass this challenge by demonstrating an extremely broadband photodetector based on a two-dimensional (2D) van der Waals heterostructure that is sensitive to light across over a decade in energy from the mid-infrared (MIR) to deep-ultraviolet (DUV) at room temperature.

View Article and Find Full Text PDF

Metasurfaces have emerged as a breakthrough platform for manipulating light at the nanoscale and enabling on-demand optical functionalities for next-generation biosensing, imaging, and light-generating photonic devices. However, translating this technology to practical applications requires low-cost and high-throughput fabrication methods. Due to the limited choice of materials with suitable optical properties, it is particularly challenging to produce metasurfaces for the technologically relevant mid-infrared spectral range.

View Article and Find Full Text PDF

Ultrafast, high sensitive, low cost photodetectors operating at room temperature sensitive from the deep-ultraviolet to mid-infrared region remain a significant challenge in optoelectronics. Achievements in traditional semiconductors using cryogenic operation and complicated growth processes prevent the cost-effective and practical application of broadband detectors. Alternative methods towards high-performance photodetectors, hybrid graphene-semiconductor colloidal quantum dots have been intensively explored.

View Article and Find Full Text PDF

We report on the development of a high-power mid-infrared frequency comb with 100 MHz repetition rate and 100 fs pulse duration. Difference frequency generation is realized between two branches derived from an Er:fiber comb, amplified separately in Yb:fiber and Er:fiber amplifiers. Average powers of 6.

View Article and Find Full Text PDF

We report on the progress towards developing a new method for fabricating more efficient, broadband antireflective (AR) moth-eye structures in via a direct nanoimprinting technique. Thermal reflow is used during mold fabrication to reshape a conventional deep-ultraviolet lithography in order to promote a pattern transfer of "secant ogive"-like moth-eye structures. Once replicated, structures modified by reflow displayed greater AR efficiency compared to structures replicated by a conventional mold, achieving the highest spectrum-averaged transmittance improvement of 12.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!