Orphan nuclear receptor 4A1 (NR4A1) and novel ligands.

Essays Biochem

Department of Veterinary Physiology and Pharmacology, Texas A&M University, College Station, TX 77843, U.S.A.

Published: December 2021

The nuclear receptor (NR) superfamily of transcription factors encodes expression of 48 human genes that are important for maintaining cellular homeostasis and in pathophysiology, and this has been observed for all sub-families including orphan receptors for which endogenous ligands have not yet been identified. The orphan NR4A1 (Nur77 and TR3) and other members of this sub-family (NR4A2 and NR4A3) are immediate early genes induced by diverse stressors, and these receptors play an important role in the immune function and are up-regulated in some inflammatory diseases including solid tumors. Although endogenous ligands for NR4A have not been identified, several different classes of compounds have been characterized as NR4A1 ligands that bind the receptor. These compounds include cytosporone B and structurally related analogs, bis-indole derived (CDIM) compounds, the triterpenoid celastrol and a number of other chemicals including polyunsaturated fatty acids. NR4A1 ligands bind different regions/surfaces of NR4A1 and exhibit selective NR4A1 modulator (SNR4AM) activities that are dependent on ligand structure and cell/tissue context. NR4A1 ligands exhibit pharmacologic activities in studies on cancer, endometriosis metabolic and inflammatory diseases and are promising agents with clinical potential for treating multiple diseases.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11410023PMC
http://dx.doi.org/10.1042/EBC20200164DOI Listing

Publication Analysis

Top Keywords

nr4a1 ligands
12
nuclear receptor
8
endogenous ligands
8
inflammatory diseases
8
ligands bind
8
nr4a1
7
ligands
6
orphan nuclear
4
receptor 4a1
4
4a1 nr4a1
4

Similar Publications

Design, synthesis, and biological evaluation of N-(2-(adamantan-1-yl)-1H-indol-5-yl)-N-(substituent)-1,2-dicarboxamides as anticancer agents targeting Nur77-mediated endoplasmic reticulum stress.

Bioorg Chem

February 2025

State Key Laboratory of Cellular Stress Biology, Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen 361102, China. Electronic address:

Targeting endoplasmic reticulum (ER) stress-induced apoptosis has attracted considerable research interest in anti-cancer drug development. Nur77 is a potential therapeutic target in many cancers and several Nur77 modulators have recently been identified as effective anticancer agents by activating ER stress. As an ongoing work, this study reports a new series of novel N-(2-(adamantan-1-yl)-1H-indol-5-yl)-N-(substituent)-1,2-dicarboxamides as potent Nur77 modulators that cause ER stress-induced apoptosis.

View Article and Find Full Text PDF

Radon (Rn) is a naturally occurring radioactive gas, ionizing radiation emitted by the radon induces oxidative stress and the up-regulation of inflammatory proteins, which may cause lung damage or cancer. However, the underlying pathogenesis remains to be determined. Effector T helper cells are key in mediating the host's protection and immune homeostasis.

View Article and Find Full Text PDF

Prostate cancer (PCa) is a complex disease with diverse molecular alterations. The aryl hydrocarbon receptor (AhR) is a ligand-activated transcription factor that exhibits pleiotropic roles in PCa, and 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) is a potent ligand for AhR. While targeting ferroptosis is an innovative PCa therapeutic strategy, the impact of AhR on this process remains unclear.

View Article and Find Full Text PDF

Inhibition of colorectal cancer aggressiveness by Oleanolic acid through Nur77 degradation.

Phytomedicine

December 2024

The Third Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, 210023, People's Republic of China; Department of Oncology, Jiangsu Province Academy of Traditional Chinese Medicine, 100 Shizi Road, Nanjing, Jiangsu, 210028, People's Republic of China. Electronic address:

Background: Colorectal cancer (CRC) is the second primary malignancy in China with tough treatment challenge. Although Oleanolic acid (OA) protects against various cancers, its mechanisms in CRC are not well defined. Our previously study showed that Nur77 has CRC promoting effect.

View Article and Find Full Text PDF
Article Synopsis
  • Scientists are studying how ionizing radiation affects skin injuries, especially in industries and medicine, using samples from a nuclear accident and rat models.
  • They used a technique called single-cell RNA sequencing to see the changes in skin cells after radiation exposure, finding specific molecules that may help treat injuries.
  • The research showed that certain skin cells, like fibroblasts, reacted strongly to radiation, which helped them understand how these injuries happen and how to potentially fix them.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!