Uncontrolled dendrite formation in the high energy density of lithium (Li) metal batteries (LMBs) may pose serious safety risks. While numerous studies have attempted to protect separators, these proposed methods fail to effectively inhibit upward dendrite growth that punctures through the separator. Here, we introduce a novel "orientated-growth" strategy that transfers the main depositional interface to the anode/current collector interface from the anode/separator interface. We placed a layer of cellulose/graphene carbon composite aerogel (CCA) between the current collector and the anode (LCL-bottom). This layer works as a charge organizer that induces a high current density and encourages Li to deposit at the anode/current collector interface. Both in situ and ex situ images of the electrode demonstrate that the anode part of the cell has been flipped; with the newly deposited particles facing the current collector and the smooth surface facing the separator. The electrode in half and full cells showed outstanding cyclic stability and rate capability, with the LCL-bottom/LFP full cell capable of maintaining 94 % of its initial capacity after 1000 cycles.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/anie.202105831 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!