Metal ions have been found to play an important role in the formation of extracellular β-amyloid plaques, a major hallmark of Alzheimer's disease. In the present study, the conformational landscape of Aβ42 with Al(iii) and Cu(ii) has been explored using Gaussian accelerated molecular dynamics. Both metals reduce the flexibility of the peptide and entail a higher structural organization, although to different degrees. As a general trend, Cu(ii) binding leads to an increased α-helix content and to the formation of two α-helices that tend to organize in a U-shape. By contrast, most Al(iii) complexes induce a decrease in helical content, leading to more extended structures that favor the appearance of transitory β-strands.

Download full-text PDF

Source
http://dx.doi.org/10.1039/d1cp01561cDOI Listing

Publication Analysis

Top Keywords

conformational landscape
8
impact cuii
4
cuii aliii
4
aliii conformational
4
landscape amyloidβ
4
amyloidβ metal
4
metal ions
4
ions play
4
play role
4
role formation
4

Similar Publications

Quantitative characterization of protein conformational landscapes is a computationally challenging task due to their high dimensionality and inherent complexity. In this study, we systematically benchmark several widely used dimensionality reduction and clustering methods to analyze the conformational states of the Trp-Cage mini-protein, a model system with well-documented folding dynamics. Dimensionality reduction techniques, including Principal Component Analysis (PCA), Time-lagged Independent Component Analysis (TICA), and Variational Autoencoders (VAE), were employed to project the high-dimensional free energy landscape onto 2D spaces for visualization.

View Article and Find Full Text PDF

Frameshifting is an essential mechanism employed by many viruses including coronaviruses to produce viral proteins from a compact RNA genome. It is facilitated by specific RNA folds in the frameshift element (FSE), which has emerged as an important therapeutic target. For SARS-CoV-2, a specific 3-stem pseudoknot has been identified to stimulate frameshifting.

View Article and Find Full Text PDF

Allostery.

Q Rev Biophys

January 2025

Department of Chemistry, University of Oslo, Oslo, Norway.

describes the ability of biological macromolecules to transmit signals spatially through the molecule from an site – a site that is distinct from binding sites of primary, endogenous ligands – to the functional or active site. This review starts with a historical overview and a description of the classical example of allostery – hemoglobin – and other well-known examples (aspartate transcarbamoylase, Lac repressor, kinases, G-protein-coupled receptors, adenosine triphosphate synthase, and chaperonin). We then discuss fringe examples of allostery, including intrinsically disordered proteins and inter-enzyme allostery, and the influence of dynamics, entropy, and conformational ensembles and landscapes on allosteric mechanisms, to capture the essence of the field.

View Article and Find Full Text PDF

The conformational landscape of human transthyretin revealed by cryo-EM.

Nat Struct Mol Biol

January 2025

Department of Integrative Structural and Computational Biology, Scripps Research, La Jolla, CA, USA.

Transthyretin (TTR) is a natively tetrameric thyroxine transporter in blood and cerebrospinal fluid whose misfolding and aggregation causes TTR amyloidosis. A rational drug design campaign identified the small molecule tafamidis (Vyndamax) as a stabilizer of the native TTR fold, and this aggregation inhibitor is regulatory agency approved for the treatment of TTR amyloidosis. Here we used cryo-EM to investigate the conformational landscape of this 55 kDa tetramer in the absence and presence of one or two ligands, revealing inherent asymmetries in the tetrameric architecture and previously unobserved conformational states.

View Article and Find Full Text PDF

The COVID-19 pandemic caused by SARS-CoV-2 continues to pose a major challenge to global health. Targeting the main protease of the virus (Mpro), which is essential for viral replication and transcription, offers a promising approach for therapeutic intervention. In this study, advanced computational techniques such as molecular docking and molecular dynamics simulations were used to screen a series of antiviral compounds for their potential inhibitory effect on the SARS-CoV-2 Mpro.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!