Tuberculosis (TB) is the deadliest infectious disease in the world. In , the first committed step in sulfate assimilation is the reductive cleavage of adenosine-5'-phosphosulfate (APS) to form adenosine-5'-phosphate (AMP) and sulfite by the enzyme APS reductase (APSR). The vital role of APSR in the production of essential reduced-sulfur-containing metabolites and the absence of a homologue enzyme in humans makes APSR a potential target for therapeutic interventions. Here, we present the crystal structure of the [4Fe-4S] cluster-containing APSR from (MtbAPSR) and compare it to previously determined structures of sulfonucleotide reductases. We further present MtbAPSR structures with substrate APS and product AMP bound in the active site. Our structures at a 3.1 Å resolution show high structural similarity to other sulfonucleotide reductases and reveal that APS and AMP have similar binding modes. These studies provide structural data for structure-based drug design aimed to combat TB.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8173546 | PMC |
http://dx.doi.org/10.1021/acsomega.1c01043 | DOI Listing |
Inorg Chem
January 2025
Institute of Solid State Physics, TU Wien, A-1040 Vienna, Austria.
A novel ternary boride, NiPtB ( = 0.5), was obtained by argon-arc melting of the elements followed by annealing at 750 °C. It exhibits a new structure type with the space group ( = 2.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
February 2025
Department of Earth System Sciences, Center for Earth System Research and Sustainability, University of Hamburg, Hamburg 20146, Germany.
As an essential micronutrient, phosphorus plays a key role in oceanic biogeochemistry, with its cycling intimately connected to the global carbon cycle and climate change. Authigenic carbonate fluorapatite (CFA) has been suggested to represent a significant phosphorus sink in the deep ocean, but its formation mechanisms in oceanic low-productivity settings remain poorly constrained. Applying X-ray absorption near edge structure, transmission electron microscopy, and laser ablation inductively coupled plasma mass spectrometer analyses, we report a unique mineral assemblage where CFA crystals coat phillipsite in abyssal sediments of the East Mariana Basin and the Philippine Sea.
View Article and Find Full Text PDFPLoS Pathog
January 2025
Department of Microbiology, Faculty of Science, University of Manitoba, Winnipeg, Manitoba, Canada.
RNA viruses have evolved numerous strategies to overcome host resistance and immunity, including the use of multifunctional proteases that not only cleave viral polyproteins during virus replication but also deubiquitinate cellular proteins to suppress ubiquitin (Ub)-mediated antiviral mechanisms. Here, we report an approach to attenuate the infection of Arabidopsis thaliana by Turnip Yellow Mosaic Virus (TYMV) by suppressing the polyprotein cleavage and deubiquitination activities of the TYMV protease (PRO). Performing selections using a library of phage-displayed Ub variants (UbVs) for binding to recombinant PRO yielded several UbVs that bound the viral protease with nanomolar affinities and blocked its function.
View Article and Find Full Text PDFInorg Chem
January 2025
Research Center for Crystal Materials, State Key Laboratory of Functional Materials and Devices for Special Environmental Conditions, Xinjiang Key Laboratory of Functional Crystal Materials, and Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, 40-1 South Beijing Road, Urumqi 830011, P. R. China.
Among the infrared (IR) optical material systems, the heavy-metal oxyhalide system has become an emerging system in recent years. Introducing heavy-metal cations and halogen anions with large atomic numbers is conducive to widening the IR transparency window and improving the birefringence value. Our experiments focus on the PbO-PbI system and find a new lead oxyhalide, PbOI.
View Article and Find Full Text PDFPLoS One
January 2025
Department of Electrical and Electronic Engineering, Pabna University of Science and Technology, Pabna, Bangladesh.
Waterborne bacteria pose a serious hazard to human health, hence a precise detection method is required to identify them. A photonic crystal fiber sensor that takes into account the dangers of aquatic bacteria has been suggested, and its optical characteristics in the THz range have been quantitatively assessed. The PCF sensor was designed and examined as computed in Comsol Multiphysics, a program in which uses the method of "Finite Element Method" (FEM).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!