Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Without neuromorphic hardware, artificial stereo vision suffers from high resource demands and processing times impeding real-time capability. This is mainly caused by high frame rates, a quality feature for conventional cameras, generating large amounts of redundant data. Neuromorphic visual sensors generate less redundant and more relevant data solving the issue of over- and undersampling at the same time. However, they require a rethinking of processing as established techniques in conventional stereo vision do not exploit the potential of their event-based operation principle. Many alternatives have been recently proposed which have yet to be evaluated on a common data basis. We propose a benchmark environment offering the methods and tools to compare different algorithms for depth reconstruction from two event-based sensors. To this end, an experimental setup consisting of two event-based and one depth sensor as well as a framework enabling synchronized, calibrated data recording is presented. Furthermore, we define metrics enabling a meaningful comparison of the examined algorithms, covering aspects such as performance, precision and applicability. To evaluate the benchmark, a stereo matching algorithm was implemented as a testing candidate and multiple experiments with different settings and camera parameters have been carried out. This work is a foundation for a robust and flexible evaluation of the multitude of new techniques for event-based stereo vision, allowing a meaningful comparison.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8170485 | PMC |
http://dx.doi.org/10.3389/frobt.2021.647634 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!