Children with flexible flatfoot is common in clinics and there is no unified conclusion on surgical treatment. And for some patients with severe deformities, the correction of the subtalar joint arthroereisis combine the release of the Achilles tendon or gastrocnemius muscle release is still not satisfactory. The main aim of the present study was to investigate the therapeutic outcomes of subtalar arthroereisis combined with Achilles tendon or gastrocnemius recession and medial soft tissue (spring ligament, talonavicular joint capsule, tibionavicular ligaments and tibiospring ligaments) tightening for treating flexible flatfoot with severe deformities. Thirty patients (32 feet) with pediatric flexible flatfoot who underwent subtalar arthroereisis and soft tissue procedures during January 2016 to January 2018. There were 18 males (20 feet) and 12 females (12 feet) with an average age of 9.5 years (range, 8-12 years). We used the AOFAS scores and VAS scores combined with angles measure to evaluate the pre-operative and post-operative status. Thirty patients (32 feet) were followed up for 25.3 months on average (range, 18-36 months). There was no infection. Post-operative foot pain, arch collapse, and other symptoms improved. At last follow-up, the Meary angle was decreased from 17.5° ± 4.4° to 4.1° ± 1.2° ( < 0.05), the talar-first metatarsal (AP) was decreased from 15.3° ± 3.1° to 4.8° ± 1.3°( < 0.05), The mean AOFAS score was rose from 66.6 ± 5.8 to 88.6 ± 7.9 ( < 0.05), the mean VAS score was decreased from 6.6 ± 0.6 to 1.7 ± 0.3 ( < 0.05). The subtalar arthroereisis combined with soft tissue procedures can effectively correct flexible flatfoot in children and it is a significant method for severe forefoot abduction reconstruction. IV.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8175848PMC
http://dx.doi.org/10.3389/fped.2021.656178DOI Listing

Publication Analysis

Top Keywords

flexible flatfoot
20
subtalar arthroereisis
16
soft tissue
16
tissue procedures
12
flatfoot children
8
arthroereisis soft
8
severe deformities
8
achilles tendon
8
tendon gastrocnemius
8
arthroereisis combined
8

Similar Publications

Enhanced diagnosis of pes planus and pes cavus using deep learning-based segmentation of weight-bearing lateral foot radiographs: a comparative observer study.

Biomed Eng Lett

January 2025

Department of Biomedical Engineering, Asan Medical Institute of Convergence Science and Technology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea.

Unlabelled: A weight-bearing lateral radiograph (WBLR) of the foot is a gold standard for diagnosing adult-acquired flatfoot deformity. However, it is difficult to measure the major axis of bones in WBLR without using auxiliary lines. Herein, we develop semantic segmentation with a deep learning model (DLm) on the WBLR of the foot for enhanced diagnosis of pes planus and pes cavus.

View Article and Find Full Text PDF

Purpose: The present study is to explore the appropriate plantar support force for its effect on improving the collapse of the medial longitudinal arch with flexible flatfoot.

Methods: A finite element model with the plantar fascia attenuation was constructed simulating as flexible flatfoot. The appropriate plantar support force was evaluated.

View Article and Find Full Text PDF

Background: Pes planus (flatfoot) and pes cavus (high arch foot) are common foot deformities, often requiring clinical and radiographic assessment for diagnosis and potential subsequent management. Traditional diagnostic methods, while effective, pose limitations such as cost, radiation exposure, and accessibility, particularly in underserved areas.

Aim: To develop deep learning algorithms that detect and classify such deformities using smartphone cameras.

View Article and Find Full Text PDF

Background: Pediatric flexible flatfoot (FFF) is a common condition characterized by the collapse of the medial longitudinal arch, which can lead to pain and functional impairment in a subset of patients. Subtalar arthroereisis (AR) is a minimally invasive procedure that corrects FFF by limiting excessive pronation of the subtalar joint. Two main techniques exist: endosinotarsal AR, which involves placing an implant in the sinus tarsi, and exosinotarsal AR, which uses a screw external to the sinus tarsi.

View Article and Find Full Text PDF

Although the connection between muscular strength and flatfoot condition is well-established, the impact of corrective exercises on these muscles remains inadequately explored. This study aimed to assess the impact of intrinsic- versus extrinsic-first corrective exercise programs on muscle morphometry and navicular drop in boys with flexible flatfoot. Twenty-five boys aged 10-12 with flexible flatfoot participated, undergoing a 12-week corrective exercise program, with a shift in focus at six weeks.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!