Photosynthetic pigments form light-harvesting networks to enable nearly perfect quantum efficiency in photosynthesis excitation energy transfer. However, similar light-harvesting mechanisms have not been reported in light sensing processes in other classes of photoreceptors during light-mediated signaling. Here, based on our earlier report, we mapped out a striking energy-transfer network composed of 26 structural tryptophan residues in the plant UV-B photoreceptor UVR8. The spectra of the tryptophan chromophores are tuned by the protein environments, funneling all excitation energy to a cluster of four tryptophan residues, a pyramid center, where the excitation-induced monomerization is initiated for cell signaling. With extensive site-directed mutagenesis, various time-resolved fluorescence techniques, and combined QM/MM simulations, we determined the energy-transfer rates for all donor-acceptor pairs, revealing the time scales from tens of picoseconds to nanoseconds. The overall light harvesting quantum efficiency by the pyramid center is significantly increased to 73%, compared to a direct excitation probability of 35%. UVR8 is the only photoreceptor discovered so far using a natural amino-acid tryptophan without utilizing extrinsic chromophores to form a network to carry out both light harvesting and light perception for biological functions.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8163212PMC
http://dx.doi.org/10.1039/d0sc04909cDOI Listing

Publication Analysis

Top Keywords

light harvesting
12
photoreceptor uvr8
8
quantum efficiency
8
excitation energy
8
tryptophan residues
8
pyramid center
8
light
5
dynamics mechanism
4
mechanism light
4
harvesting photoreceptor
4

Similar Publications

The Orange Carotenoid Protein (OCP) is a unique water-soluble photoactive protein that plays a critical role in regulating the balance between light harvesting and photoprotective responses in cyanobacteria. The challenge in understanding OCP´s photoactivation mechanism stems from the heterogeneity of the initial configurations of its embedded ketocarotenoid, which in the dark-adapted state can form up to two hydrogen bonds to critical amino acids in the protein's C-terminal domain, and the extremely low quantum yield of primary photoproduct formation. While a series of experiments involving point mutations within these contacts helped us to identify these challenges, they did not resolve them.

View Article and Find Full Text PDF

A bio-inspired microwave wireless system for constituting passive and maintenance-free IoT networks.

Natl Sci Rev

February 2025

State Key Laboratory of Millimeter Waves, School of Information Science and Engineering, Southeast University, Nanjing 210096, China.

With the rapid expansion of wireless networks, the deployment and long-term maintenance of distributed microwave terminals have become increasingly challenging. To address these issues, we present a bio-inspired microwave system to constitute passive and maintenance-free wireless networks. Drawing inspiration from vertebrate skeletons and skins, we employ stimuli-responsive polymer with tunable stiffness to support and protect sensitive electromagnetic structures, and synthesize self-healable skin-like polymer for system encapsulation.

View Article and Find Full Text PDF

Developing a self-sensitized catalyst from earth-abundant elements, capable of efficient light harvesting and electron transfer, is crucial for enhancing the efficacy of CO transformation, a critical step in environmental cleanup and advancing clean energy prospects. Traditional approaches relying on external photosensitizers, comprising 4d/5d metal complexes, involve intermolecular electron transfer, and attachment of photosensitizing arms to the catalyst necessitates intramolecular electron transfer, underscoring the need for a more integrated solution. We report a new Cu(ii) complex, K[CuNDPA] (1[K(18-crown-6)]), bearing a dipyrrin amide-based trianionic tetradentate ligand, NDPA (HL), which is capable of harnessing light energy, despite having a paramagnetic Cu(ii) centre, without any external photosensitizer and photocatalytically reducing CO to CO in acetonitrile : water (19 : 1 v/v) with a TON as high as 1132, a TOF of 566 h and a selectivity of 99%.

View Article and Find Full Text PDF

Identifying two-dimensional (2D) high-efficiency solar photovoltaic devices remains an urgent challenge in addressing current energy demands. Considering the limits of isolated 2D systems in photovoltaics, one most effective solution is stacking them into van der Waals heterostructures (vdWHs). However, the favorable factors for photovoltaics in vdWHs is still uncertain, nor the intrinsic principles is clear.

View Article and Find Full Text PDF

Mesoporous Fe2O3-TiO2 Integrated with Plasmonic Ag Nanoparticles for Enhanced Solar H2 Production.

Chem Asian J

January 2025

CSIR-National Chemical Laboratory: CSIR National Chemical Laboratory, Catalysis and Inorganic Chemistry Division, Dr. Homi Bhabha Road, 411 008, Pune, INDIA.

Present work describes a sol-gel assisted one-pot synthesis of mesoporous Fe₂O₃-TiO₂ nanocomposites (TiFe) with different Ti:Fe ratios, and fabrication of Ag-integrated with TiFe nanocomposites (TiFeAg) by a chemical reduction method and demonstrated for high solar H2 generation activity in direct sunlight. Enhanced solar H2 production is attributed to the light absorption from entire UV+Visible region of solar spectrum combined with Schottky (Ag-semiconductor) and heterojunctions (TiO2-Fe2O3), as evidenced from HRTEM and various characterization studies.  TiFeAg-2 thin film (1 wt% Ag-loaded TiFe-4) displayed the highest activity with a solar H2 yield of 7.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!