Fluorescent photosensitizers (PSs) often encounter low singlet oxygen (O) quantum yields and fluorescence quenching in the aggregated state, mainly involving the intersystem crossing process. Herein, we successfully realize maximizing O quantum yields of fluorescent PSs through promoting radical-pair intersystem crossing (RP-ISC), which serves as a molecular symmetry-controlling strategy of donor-acceptor (D-A) motifs. The symmetric quadrupolar A-D-A molecule PTP exhibits an excellent O quantum yield of 97.0% with bright near-infrared fluorescence in the aggregated state. Theoretical and ultrafast spectroscopic studies suggested that the RP-ISC mechanism dominated the formation of the triplet for PTP, where effective charge separation and an ultralow singlet-triplet energy gap (0.01 eV) enhanced the ISC process to maximize O generation. Furthermore, and experiments demonstrated the dual function of PTP as a fluorescent imaging agent and an anti-cancer therapeutic, with promising potential applications in both diagnosis and theranostics.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8162435 | PMC |
http://dx.doi.org/10.1039/d0sc03128c | DOI Listing |
Chemistry
December 2024
Technological University Dublin, Institute of Polymers, Kevin Street, Dublin 8, Dublin, IRELAND.
Donor-acceptor BODIPY dyads, functionalized at the 2 and 6 positions with benzyl ester (BDP-DE) or carboxylic acid (BDP-DA) groups, were synthesized and characterized for their optoelectronic properties. The introduction of carbonyl groups increased the reduction potential of the BODIPY core by 0.15-0.
View Article and Find Full Text PDFChemistry
December 2024
Nagoya University, Department of Molecular and Macromolecular Chemistry, Graduate School of Engineering, Furo-cho, Chikusa-ku, 464-8603, Nagoya, JAPAN.
The scalable synthesis of figure-eight π-systems is challenging for the conventional bottom-up approach. We have recently reported that the oxidative inner-bond cleavage of commercially available dibenzo[g,p]chrysene efficiently furnishes a figure-eight π-acceptor, cyclobisbiphenylenecarbonyl (CBBC), in large quantity. Furthermore, its donor-acceptor-type derivative with four N-carbazolyl substituents at the meta-positions of the carbonyl groups exhibited thermally activated delayed fluorescence (TADF) and circularly polarized luminescence (CPL) with a high |gCPL| value of 1.
View Article and Find Full Text PDFJ Phys Chem Lett
December 2024
Molecular Spectroscopy Laboratory, RIKEN, 2-1 Hirosawa Wako, Saitama 351-0198, Japan.
[Pt(NCN)MeCN] (NCN = 1,3-di(2-pyridyl)benzene, MeCN = acetonitrile) forms oligomers in the ground state due to metallophilic interactions, and a Pt-Pt bond is formed with photoexcitation. Ultrafast excited-state dynamics of the [Pt(NCN)MeCN] dimer in acetonitrile is investigated by femtosecond time-resolved absorption (TA) and picosecond emission spectroscopy. The femtosecond TA signals exhibit 60 cm oscillations arising from the Pt-Pt stretching motion in the S dimer.
View Article and Find Full Text PDFChem Sci
December 2024
Department of Physical Chemistry, University of Málaga, Andalucia-Tech Campus de Teatinos s/n 29071 Málaga Spain
The synthesis, electrochemical, spectroelectrochemical, photophysical and light induced electron transfer reactions in two new anthanthrene quinodimethanes have been studied and analyzed in the context of dynamic electrochemistry. Their properties are dependent on the interconversion between folded and twisted forms, which are separated by a relatively small energy range, thus allowing to explore their interconversion by variable temperature measurements. The photophysics of these molecules is mediated by a diradical excited state with a twisted structure that habilitates rapid intersystem crossing.
View Article and Find Full Text PDFJ Am Chem Soc
December 2024
Department of Physics and Astronomy, University of Sheffield, Hounsfield Road, Sheffield S3 7RH, U.K.
Activated intramolecular singlet fission is known to occur in the conjugated polymer polythienylene-vinylene (P3TV). Instead, efficient intersystem crossing has been observed in a short 3-alkyl(thienylene-vinylene) dimer. Here, we investigate a series of oligomers covering the conjugation length gap between the dimer and polymer.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!