Over exploitation of natural resources and human activities are relentlessly fueling the emission of CO in the atmosphere. Accordingly, continuous efforts are required to find solutions to address the issue of excessive CO emission and its potential effects on climate change. It is imperative that the world looks towards a portfolio of carbon mitigation solutions, rather than a single strategy. In this regard, the use of CO as a C1 source is an attractive strategy as CO has the potential to be a great asset for the industrial sector and consumers across the globe. In particular, the reduction of CO offers an alternative to fossil fuels for various organic industrial feedstocks and fuels. Consequently, efficient and scalable approaches for the reduction of CO to products such as methane and methanol can generate value from its emissions. Accordingly, in recent years, metal-free catalysis has emerged as a sustainable approach because of the mild reaction conditions by which CO can be reduced to various value-added products. The metal-free catalytic reduction of CO offers the development of chemical processes with low cost, earth-abundant, non-toxic reagents, and low carbon-footprint. Thus, this perspective aims to present the developments in both the reduction and reductive functionalization chemistry of CO during the last decade using various metal-free catalysts.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8162374PMC
http://dx.doi.org/10.1039/d0sc03528aDOI Listing

Publication Analysis

Top Keywords

catalytic reduction
8
reduction offers
8
reduction
5
activation catalytic
4
metal-free
4
reduction metal-free
4
metal-free approach
4
approach exploitation
4
exploitation natural
4
natural resources
4

Similar Publications

Revealing the Potential-Dependent Rate-Determining Step of Oxygen Reduction Reaction on Single-Atom Catalysts.

J Am Chem Soc

January 2025

Department of Chemistry and Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen 518055, Guangdong, China.

Single-atom catalysts (SACs) have attracted widespread attention due to their potential to replace platinum-based catalysts in achieving efficient oxygen reduction reaction (ORR), yet the rational optimization of SACs remains challenging due to their elusive reaction mechanisms. Herein, by employing ab initio molecular dynamics simulations and a thermodynamic integration method, we have constructed the potential-dependent free energetics of ORR on a single iron atom catalyst dispersed on nitrogen-doped graphene (Fe-N/C) and further integrated these parameters into a microkinetic model. We demonstrate that the rate-determining step (RDS) of the ORR on SACs is potential-dependent rather than invariant within the operative potential range.

View Article and Find Full Text PDF

Enhanced Efficiency of Anionic Guerbet-Type Amino Acid Surfactants.

Langmuir

January 2025

Research Focus Area for Chemical Resource Beneficiation, Catalysis and Synthesis Research Group, North-West University, 11 Hoffman Street, Potchefstroom 2522, South Africa.

This study investigates the surfactant properties and efficiency of linear and Guerbet-type amino acid surfactants. Utilizing a Wilhelmy plate method, we assessed the colloidal efficiency of these surfactants, with the lowest observed critical micelle concentration at 0.046 mmol L, significantly reducing surface tension to as low as 25.

View Article and Find Full Text PDF

This study investigates the impact of structural isomerism on the excited state lifetime and redox energetics of heteroleptic [Ir(ppy)2(bpy)]+ and homoleptic Ir(ppy)3 photoredox catalysts using ground-state and time-dependent density functional theory methods. While the ground- and excited-state reduction potentials differ only slightly among the isomers of these complexes, our findings reveal significant variations in the radiative and non-radiative decay rates of the reactivity-controlling triplet 3MLCT states of these closely related species. The observed differences in radiative decay rates could be traced back to variations in the transition dipole moment, vertical energy gaps, and spin-orbit coupling of the isomers.

View Article and Find Full Text PDF

Silylformates are emerging surrogates of hydrosilanes, able to reduce carbonyl groups in transfer hydrosilylation reactions, with the concomitant release of CO2. In this work, a new reactivity is revealed for silylformates, in the presence of imines. Using ruthenium catalysts, and lithium iodide as a co-catalyst, imines are shown to undergo hydrocarboxysilylation by formal insertion of CO2 to the N-Si bond of silyl amine to yield silyl carbamates in excellent yields.

View Article and Find Full Text PDF

Cu-doped waste-tire carbon as catalyst for UV/HO oxidation of ofloxacin.

J Environ Manage

January 2025

School of Environmental Science and Engineering, Nanjing Tech University, Nanjing, 211816, China. Electronic address:

Ofloxacin (OFX), commonly employed in the treatment of infectious diseases, is frequently detected in aquatic environments and poses potential ecological risks. UV/HO oxidation has been recognized as an efficient approach for removing antibiotics. In this study, Cu-doped waste-tire carbon was prepared and used as a UV/HO catalyst for the degradation of OFX.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!