Metabolic reprogramming is a key cancer hallmark that has led to the therapeutic targeting of glycolysis. However, agents that target dysfunctional mitochondrial respiration for targeted therapy remains underexplored. We report the synthesis and characterization of ten (10) novel, highly potent organometallic gold(iii) complexes supported by dithiocarbamate ligands as selective inhibitors of mitochondrial respiration. The structure of dithiocarbamates employed dictates the biological stability and cellular cytotoxicity. Most of the compounds exhibit 50% inhibitory concentration (IC) in the low-micromolar (0.50-2.9 μM) range when tested in a panel of aggressive cancer types with significant selectivity for cancer cells over normal cells. Consequently, there is great interest in the mechanism of action of gold chemotherapeutics, particularly, considering that DNA is not the major target of most gold complexes. We investigate the mechanism of action of representative complexes, and in the recalcitrant triple negative breast cancer (TNBC) cell line, MDA-MB-231. Whole-cell transcriptomics sequencing revealed genes related to three major pathways, namely: cell cycle, organelle fission, and oxidative phosphorylation. irreversibly and rapidly inhibits maximal respiration in TNBC with no effect on normal epithelial cells, implicating mitochondrial OXPHOS as a potential target. Furthermore, the modulation of cyclin dependent kinases and G1 cell cycle arrest induced by these compounds is promising for the treatment of cancer. This work contributes to the need for mitochondrial respiration modulators in biomedical research and outlines a systematic approach to study the mechanism of action of metal-based agents.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8162438PMC
http://dx.doi.org/10.1039/d0sc03628eDOI Listing

Publication Analysis

Top Keywords

mitochondrial respiration
16
mechanism action
12
cell cycle
8
cancer
6
mitochondrial
5
respiration
5
cancer cell-selective
4
cell-selective modulation
4
modulation mitochondrial
4
respiration metabolism
4

Similar Publications

Spermidine enhances the heat tolerance of by promoting mitochondrial respiration driven by fatty acid β-oxidation.

Appl Environ Microbiol

January 2025

Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, China.

Unlabelled: High temperature is an unavoidable environmental stress that generally exerts detrimental effects on organisms and has widespread effects on metabolism. Spermidine is an important member of the polyamines family and is involved in a range of abiotic stress responses in plants. Mitochondria play an essential role in cellular homeostasis and are key components of the stress response.

View Article and Find Full Text PDF

Objectives: Ischemia/reperfusion (IR)-induced ventricular arrhythmia, which mainly occurs after the opening of coronary artery occlusion, poses a clinical problem. This study aims to investigate the effectiveness of pretreatment with coenzyme Q (CoQ) in combination with mitochondrial transplantation on IR-induced ventricular arrhythmias in aged rats.

Materials And Methods: Myocardial IR induction was performed by left anterior descending coronary artery occlusion for 30 min, followed by re-opening for 24 hr.

View Article and Find Full Text PDF

Prolonged exposure to high environmental temperatures results in an accumulated heat load that induces a heat stress (HS) response in dairy cattle. Heat stress compromises dairy farm profitability by reducing milk yield, altering milk composition, and hindering reproductive performance. The ability to alternate between carbohydrate and lipid sources for energy production is termed metabolic flexibility (Met Flex).

View Article and Find Full Text PDF

Mitochondrial quality control is crucial for the homeostasis of the mitochondrial network. The balance between mitophagy and biogenesis is needed to reduce cerebral ischemia-induced cell death. Ischemic preconditioning (IPC) represents an adaptation mechanism of CNS that increases tolerance to lethal cerebral ischemia.

View Article and Find Full Text PDF

Decrease of NAD Inhibits the Apoptosis of OLP T Cells via Inducing Mitochondrial Fission.

J Inflamm Res

January 2025

State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, People's Republic of China.

Purpose: Oral lichen planus (OLP) is a chronic, immune-mediated inflammatory disease involving T cells. Mitochondrial fission plays a crucial role in T cell fate through structural remodeling. Nicotinamide adenine dinucleotide (NAD) regulates mitochondrial remodeling and function.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!