The combination of several closely spaced DNA lesions, which can be induced by a single radical hit, constitutes a hallmark in the DNA damage landscape and radiation chemistry. The occurrence of such a tandem base lesion gives rise to a strong coupling with the double helix degrees of freedom and induces important structural deformations, in contrast to DNA strands containing a single oxidized nucleobase. Although such complex lesions are known to be refractory to repair by DNA glycosylases, there is still a lack of structural evidence to rationalize these phenomena. In this contribution, we explore, by numerical modeling and molecular simulations, the behavior of the bacterial glycosylase responsible for base excision repair (MutM), specialized in excising oxidatively-damaged defects such as 7,8-dihydro-8-oxoguanine (8-oxoG). The difference in lesion recognition between a simple damage and a tandem lesion featuring an additional abasic site is assessed at atomistic resolution owing to microsecond molecular dynamics simulations and machine learning postprocessing, allowing to extensively pinpoint crucial differences in the interaction patterns of the damaged bases. Our results reveal substantial changes in the interaction network surrounding the 8-oxoG upon addition of an adjacent abasic site, leading to the perturbation of the intercalation triad which is crucial for lesion recognition and processing. The recognition process might also be impacted by a more constrained MutM-DNA binding upon tandem damage, as shown by the machine learning post-processing. This work advocates for the use of such high throughput numerical simulations for exploring the complex combinatorial chemistry of tandem DNA lesions repair and more generally local multiple damaged sites of the utmost significance in radiation chemistry.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8141532 | PMC |
http://dx.doi.org/10.1016/j.csbj.2021.04.055 | DOI Listing |
JMIR Res Protoc
January 2025
Institute for Health Care Management and Research, University of Duisburg-Essen, Essen, Germany.
Background: Artificial intelligence (AI)-based clinical decision support systems (CDSS) have been developed for several diseases. However, despite the potential to improve the quality of care and thereby positively impact patient-relevant outcomes, the majority of AI-based CDSS have not been adopted in standard care. Possible reasons for this include barriers in the implementation and a nonuser-oriented development approach, resulting in reduced user acceptance.
View Article and Find Full Text PDFJ Med Internet Res
January 2025
Department of Radiation Oncology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.
Background: Primary intracranial germ cell tumors (iGCTs) are highly malignant brain tumors that predominantly occur in children and adolescents, with an incidence rate ranking third among primary brain tumors in East Asia (8%-15%). Due to their insidious onset and impact on critical functional areas of the brain, these tumors often result in irreversible abnormalities in growth and development, as well as cognitive and motor impairments in affected children. Therefore, early diagnosis through advanced screening techniques is vital for improving patient outcomes and quality of life.
View Article and Find Full Text PDFJ Med Internet Res
January 2025
Department of Gastroenterology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China.
Background: Gastrointestinal bleeding (GIB) is a severe and potentially life-threatening complication in patients with acute myocardial infarction (AMI), significantly affecting prognosis during hospitalization. Early identification of high-risk patients is essential to reduce complications, improve outcomes, and guide clinical decision-making.
Objective: This study aimed to develop and validate a machine learning (ML)-based model for predicting in-hospital GIB in patients with AMI, identify key risk factors, and evaluate the clinical applicability of the model for risk stratification and decision support.
PLoS One
January 2025
School of Exercise and Health, Shenyang Sport University, Shenyang, China.
Balance is crucial for various athletic tasks, and accurately assessing balance ability among elite athletes using simple and accessible measurement methods is a significant challenge in sports science. A common approach to balance assessment involves recording center of pressure (CoP) displacements using force platforms, with various indicators proposed to distinguish subtle balance differences. However, these indicators have not reached a consensus, and it remains unclear whether these analyses alone can fully explain the complex interactions of postural control.
View Article and Find Full Text PDFPLoS Comput Biol
January 2025
School of Software, Taiyuan University of Technology, Taiyuan, China.
Personalized cancer drug treatment is emerging as a frontier issue in modern medical research. Considering the genomic differences among cancer patients, determining the most effective drug treatment plan is a complex and crucial task. In response to these challenges, this study introduces the Adaptive Sparse Graph Contrastive Learning Network (ASGCL), an innovative approach to unraveling latent interactions in the complex context of cancer cell lines and drugs.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!