A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Towards multi-label classification: Next step of machine learning for microbiome research. | LitMetric

Towards multi-label classification: Next step of machine learning for microbiome research.

Comput Struct Biotechnol J

College of Computer Science and Technology, Qingdao University, Qingdao, Shandong 266071, China.

Published: April 2021

Machine learning (ML) has been widely used in microbiome research for biomarker selection and disease prediction. By training microbial profiles of samples from patients and healthy controls, ML classifiers constructs data models by community features that highly correlated with the target diseases, so as to determine the status of new samples. To clearly understand the host-microbe interaction of specific diseases, previous studies always focused on well-designed cohorts, in which each sample was exactly labeled by a single status type. However, in fact an individual may be associated with multiple diseases simultaneously, which introduce additional variations on microbial patterns that interferes the status detection. More importantly, comorbidities or complications can be missed by regular ML models, limiting the practical application of microbiome techniques. In this review, we summarize the typical ML approaches of single-label classification for microbiome research, and demonstrate their limitations in multi-label disease detection using a real dataset. Then we prospect a further step of ML towards multi-label classification that potentially solves the aforementioned problem, including a series of promising strategies and key technical issues for applying multi-label classification in microbiome-based studies.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8131981PMC
http://dx.doi.org/10.1016/j.csbj.2021.04.054DOI Listing

Publication Analysis

Top Keywords

multi-label classification
12
machine learning
8
learning microbiome
8
multi-label
4
classification step
4
step machine
4
microbiome
4
microbiome machine
4
microbiome biomarker
4
biomarker selection
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!