Functional imaging studies of neurologically intact adults have demonstrated that the right posterior cerebellum is activated during verb generation, semantic processing, sentence processing, and verbal fluency. Studies of patients with cerebellar damage converge to show that the cerebellum supports sentence processing and verbal fluency. However, to date there are no patient studies that investigated the specific importance of the right posterior cerebellum in language processing, because: (i) case studies presented patients with lesions affecting the anterior cerebellum (with or without damage to the posterior cerebellum), and (ii) group studies combined patients with lesions to different cerebellar regions, without specifically reporting the effects of right posterior cerebellar damage. Here we investigated whether damage to the right posterior cerebellum is critical for sentence processing and verbal fluency in four patients with focal stroke damage to different parts of the right posterior cerebellum (all involving Crus II, and lobules VII and VIII). We examined detailed lesion location by going beyond common anatomical definitions of cerebellar anatomy (i.e., according to lobules or vascular territory), and employed a recently proposed functional parcellation of the cerebellum. All four patients experienced language difficulties that persisted for at least a month after stroke but three performed in the normal range within a year. In contrast, one patient with more damage to lobule IX than the other patients had profound long-lasting impairments in the comprehension and repetition of sentences, and the production of spoken sentences during picture description. Spoken and written word comprehension and visual recognition memory were also impaired, however, verbal fluency was within the normal range, together with object naming, visual perception and verbal short-term memory. This is the first study to show that focal damage to the right posterior cerebellum leads to language difficulties after stroke; and that processing impairments persisted in the case with most damage to lobule IX. We discuss these results in relation to current theories of cerebellar contribution to language processing. Overall, our study highlights the need for longitudinal studies of language function in patients with focal damage to different cerebellar regions, with functional imaging to understand the mechanisms that support recovery.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8172582PMC
http://dx.doi.org/10.3389/fnhum.2021.664650DOI Listing

Publication Analysis

Top Keywords

posterior cerebellum
28
verbal fluency
16
focal damage
12
sentence processing
12
processing verbal
12
damage posterior
12
cerebellum
10
damage
9
posterior
8
functional imaging
8

Similar Publications

Clinical spectrum of positional downbeat nystagmus: a diagnostic approach.

J Neurol

January 2025

Department of Neurology, University of Chicago, 5841 South Maryland Avenue, Chicago, IL, 60637, USA.

Positional downbeat nystagmus (pDBN) is a common finding in dizzy patients, with etiologies ranging from benign paroxysmal positional vertigo (BPPV) to central vestibular lesions. Although peripheral pDBN often presents with distinct clinical features that differentiate it from BPPV, diagnosing its etiology can be challenging. A thorough clinical evaluation, including the physical characteristics of the nystagmus, response to positional maneuvers, and neurological findings, is often sufficient to diagnose conditions that provoke pDBN such as anterior canal BPPV, atypical posterior canal BPPV, and central causes.

View Article and Find Full Text PDF

Lower back pain comprises the majority of the disease burden of patients with ankylosing spondylitis (AS), while the alterations of the large-scale brain networks could be implicated in the neuropathophysiology of pain. The frontoparietal network (FPN) is known as a pain modulation hub, with key nodes dorsolateral prefrontal cortex (dlPFC) and ventrolateral prefrontal cortex (vlPFC) participating in the pain modulation and reappraisal process. In this study, we adopted the analytical approaches of independent component analysis (ICA) and seed-based correlation analysis (SCA) to examine the resting-state functional connectivity (rsFC) of the large-scale brain networks, notably FPN, between 82 AS patients and 61 healthy controls (HCs).

View Article and Find Full Text PDF

Performance of a task involves the engagement of various brain areas, as evidenced by the effects of lesions of particular brain areas and the results of functional neuroimaging and neurophysiological studies. Here we tested the hypothesis that overall task performance would depend on the level of ongoing, resting-state change in synaptic activity of participating areas, such that the degree of success of the outcome would be higher, the higher the resting-state activation. For that purpose, we used 248-sensor magnetoencephalography (MEG) in healthy people to obtain estimates of resting-state synaptic activity in various areas and then correlated those estimates to the average performance score in three visuospatial tasks assessed outside the MEG session using the Montreal Cognitive Assessment (MoCA), namely the Trails, Cube, and Clock Drawing (TCCD) tasks.

View Article and Find Full Text PDF

Introduction: Neuroimaging studies have demonstrated that intranasal oxytocin has extensive effects on the resting state functional connectivity of social and emotional processing networks and may have therapeutic potential. However, the extent to which intranasal oxytocin modulates functional connectivity network topology remains less explored, with inconsistent findings in the existing literature. To address this gap, we conducted an exploratory data-driven study.

View Article and Find Full Text PDF

Synaptic Density Reductions in MSA: A Potential Biomarker Identified Through [F]SynVesT-1 PET Imaging.

Ann Neurol

January 2025

Department of Nuclear Medicine, Xiangya Hospital, Central South University, Changsha, People's Republic of China.

Objective: The objective of this study was to delineate synaptic density alterations in multiple system atrophy (MSA) and explore its potential role as a biomarker for MSA diagnosis and disease severity monitoring using [F]SynVesT-1 positron emission tomography / computed tomography (PET CT).

Methods: In this prospective study, 60 patients with MSA (30 patients with MSA-parkinsonian [MSA-P] subtype and 30 patients with MSA-cerebellar [MSA-C] subtype), 30 patients with Parkinson's disease (PD), and 30 age-matched healthy controls (HCs) underwent [F]SynVesT-1 PET/CT for synaptic density assessment. Visual, voxel, and volumetric region of interest (VOI) analyses were used to elucidate synaptic density patterns in the MSA brain and establish diagnostic criteria.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!