Circumstantial evidence points to a pathological role of alpha-synuclein (aSyn; gene symbol SNCA), conferred by aSyn misfolding and aggregation, in Parkinson disease (PD) and related synucleinopathies. Several findings in experimental models implicate perturbations in the tissue homeostatic mechanisms triggered by pathological aSyn accumulation, including impaired redox homeostasis, as significant contributors in the pathogenesis of PD. The nuclear factor erythroid 2-related factor (NRF2/Nrf2) is recognized as 'the master regulator of cellular anti-oxidant response', both under physiological as well as in pathological conditions. Using immunohistochemical analyses, we show a robust nuclear NRF2 accumulation in post-mortem PD midbrain, detected by NRF2 phosphorylation on the serine residue 40 (nuclear active p-NRF2, S40). Curated gene expression analyses of four independent publicly available microarray datasets revealed considerable alterations in NRF2-responsive genes in the disease affected regions in PD, including substantia nigra, dorsal motor nucleus of vagus, locus coeruleus and globus pallidus. To further examine the putative role of pathological aSyn accumulation on nuclear NRF2 response, we employed a transgenic mouse model of synucleionopathy (M83 line, expressing the mutant human A53T aSyn), which manifests widespread aSyn pathology (phosphorylated aSyn; S129) in the nervous system following intramuscular inoculation of exogenous fibrillar aSyn. We observed strong immunodetection of nuclear NRF2 in neuronal populations harboring p-aSyn (S129), and found an aberrant anti-oxidant and inflammatory gene response in the affected neuraxis. Taken together, our data support the notion that pathological aSyn accumulation impairs the redox homeostasis in nervous system, and boosting neuronal anti-oxidant response is potentially a promising approach to mitigate neurodegeneration in PD and related diseases.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8183088 | PMC |
http://dx.doi.org/10.1186/s40478-021-01209-3 | DOI Listing |
Alzheimers Dement
December 2024
Allen Institute for Brain Science, Seattle, WA, USA.
Background: Alzheimer's Disease is marked by the gradual aggregation of pathological proteins, Tau and beta-amyloid, throughout various areas of the brain. The progression of these pathologies follows a consistent pattern, impacting various cellular populations as it advances through each brain region. Previously, we used Bayesian algorithms to create a continuous progression score to mathematically capture the collective aggregation of multiple pathological variables within a specific brain region.
View Article and Find Full Text PDFAlzheimers Dement
December 2024
Memory & Aging Center, Department of Neurology, University of California in San Francisco, San Francisco, CA, USA.
Background: Lewy body disease (LBD) often co-occurs with Alzheimer's (AD), resulting in more significant cognitive decline than AD or LBD alone. LBD's hallmarks, asyn-positive Lewy bodies and neurites, propagate from the enteric system or olfactory bulb to the amygdala, which acts as a gatekeeper for spread to other structures. Initially, LBD appears in the central or cortical nuclei, reflecting brainstem or olfactory origins.
View Article and Find Full Text PDFNeurobiol Dis
December 2024
Department of Pharmacology, Toxicology, and Pharmacy, University of Veterinary Medicine Hannover, Bünteweg 17, 30559 Hannover, Germany. Electronic address:
Increasing evidence points to infectious diseases as contributor to the pathogenesis of neurodegeneration in Parkinson's disease (PD), probably driven by a peripheral and CNS inflammatory response together with alpha-synuclein (aSyn) pathology. Pro-inflammatory lipopolysaccharide (LPS) endotoxin is suggested as a risk factor, and LPS shedding gram-negative bacteria are more prevalent in the gut-microbiome of PD patients. Here, we investigated whether LPS could contribute to the neurodegenerative disease progression via neuroinflammation, especially under conditions of aSyn pathology.
View Article and Find Full Text PDFActa Neuropathol Commun
December 2024
Department of Physiology & Biophysics, Case Western Reserve University School of Medicine, Cleveland, OH, 44106, USA.
Mitochondrial dysfunction and α-synuclein (αSyn) aggregation are key contributors to Parkinson's Disease (PD). While genetic and environmental risk factors, including mutations in mitochondrial-associated genes, are implicated in PD, the precise mechanisms linking mitochondrial defects to αSyn pathology remain incompletely understood, hindering the development of effective therapeutic interventions. Here, we identify the loss of branched chain ketoacid dehydrogenase kinase (BCKDK) as a mitochondrial risk factor that exacerbates αSyn pathology by disrupting Complex I function.
View Article and Find Full Text PDFBackground: Parkinson's Disease (PD) is a neurodegenerative disorder with prodromal gastrointestinal (GI) issues often emerging decades before motor symptoms. Pathologically, PD can be driven by accumulation of misfolded alpha synuclein (aSyn) protein in the brain and periphery, including the GI tract. Disease epidemiology differs by sex, with men twice as likely to develop PD.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!