Consequences of mutation accumulation for growth performance are more likely to be resource-dependent at higher temperatures.

BMC Ecol Evol

State Key Laboratory of Earth Surface Processes and Resource Ecology and MOE Key Laboratory for Biodiversity Science and Ecological Engineering, College of Life Sciences, Beijing Normal University, Beijing, 100875, People's Republic of China.

Published: June 2021

Background: Mutation accumulation (MA) has profound ecological and evolutionary consequences. One example is that accumulation of conditionally neutral mutations leads to fitness trade-offs among heterogenous habitats which cause population divergence. Here we suggest that temperature, which controls the rates of all biochemical and biophysical processes, should play a crucial role for determining mutational effects. Particularly, warmer temperatures may mitigate the effects of some, not all, deleterious mutations and cause stronger environmental dependence in MA effects.

Results: We experimentally tested the above hypothesis by measuring the growth performance of ten Escherichia coli genotypes on six carbon resources across ten temperatures, where the ten genotypes were derived from a single ancestral strain and accumulated spontaneous mutations. We analyzed resource dependence of MA consequences for growth yields. The MA genotypes typically showed reduced growth yields relative to the ancestral type; and the magnitude of reduction was smaller at intermediate temperatures. Stronger resource dependence in MA consequences for growth performance was observed at higher temperatures. Specifically, the MA genotypes were more likely to show impaired growth performance on all the six carbon resources when grown at lower temperatures; but suffered growth performance loss only on some, not all the six, carbon substrates at higher temperatures.

Conclusions: Higher temperatures increase the chance that MA causes conditionally neutral fitness effects while MA is more likely to cause fitness loss regardless of available resources at lower temperatures. This finding has implications for understanding how geographic patterns in population divergence may emerge, and how conservation practices, particularly protection of diverse microhabitats, may mitigate the impacts of global warming.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8180013PMC
http://dx.doi.org/10.1186/s12862-021-01846-1DOI Listing

Publication Analysis

Top Keywords

growth performance
20
higher temperatures
12
mutation accumulation
8
temperatures
8
conditionally neutral
8
population divergence
8
carbon resources
8
resource dependence
8
dependence consequences
8
consequences growth
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!