Atmospheric pollution has been considered one of the most important topics in environmental science once it can be related to the incidence of respiratory diseases, climate change, and others. Knowing the composition of this complex and variable mixture of gases and particulate matter is crucial to understand the damages it causes, help establish limit levels, reduce emissions, and mitigate risks. In this work, the current scenario of the legislation and guideline values for indoor and outdoor atmospheric parameters will be reviewed, focusing on the inorganic and organic compositions of particulate matter and on biomonitoring. Considering the concentration level of the contaminants in air and the physical aspects (meteorological conditions) involved in the dispersion of these contaminants, different approaches for air sampling and analysis have been developed in recent years. Finally, this review presents the importance of data analysis, whose main objective is to transform analytical results into reliable information about the significance of anthropic activities in air pollution and its possible sources. This information is a useful tool to help the government implement actions against atmospheric air pollution.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1080/10408347.2021.1919985 | DOI Listing |
Environ Int
December 2024
Barcelona Institute for Global Health, ISGlobal, Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain; CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain. Electronic address:
Background: Evidence is limited regarding the role of air pollution in acute lower respiratory infections among adults. We assessed the influence of long-term air pollution exposure on hospital admission for lower respiratory infections and whether there are vulnerable subgroups.
Methods: We used a populational cohort in Catalonia, Spain, comprising 3,817,820 adults residing in Catalonia as of January 1, 2015.
Nat Comput Sci
December 2024
Department of Physics and Astronomy, Tufts University, Medford, MA, USA.
Soft materials underpin many domains of science and engineering, including soft robotics, structured fluids, and biological and particulate media. In response to applied mechanical, electromagnetic or chemical stimuli, such materials typically change shape, often dramatically. Predicting their structure is of great interest to facilitate design and mechanistic understanding, and can be cast as an optimization problem where a given energy function describing the physics of the material is minimized with respect to the shape of the domain and additional fields.
View Article and Find Full Text PDFSci Rep
December 2024
Department of Ophthalmology, The Jikei University School of Medicine, Tokyo, Japan.
The surface of the eye is constantly exposed to the external environment and is affected by atmospheric conditions and air pollution, and dry eye is a typical ocular surface disease. The aim of this study is to determine whether there are seasonal differences in the number of dry eye operations in Japan and to investigate whether meteorological conditions and air pollutants are related to. The operations were examined using the National Database of Health Insurance Claims and Specific Health Checkups of Japan (NDB) database from fiscal years 2019 to 2021.
View Article and Find Full Text PDFSci Rep
December 2024
Civil and Environmental Engineering Department, King Fahd University of Petroleum & Minerals, Dhahran, 31261, Saudi Arabia.
Air pollution monitoring and modeling are the most important focus of climate and environment decision-making organizations. The development of new methods for air quality prediction is one of the best strategies for understanding weather contamination. In this research, different air quality parameters were forecasted, including Carbon Monoxide (CO), Nitrogen Monoxide (NO), Nitrogen Dioxide (NO), Ozone (O), Sulphur Dioxide (SO), Fine Particles Matter (PM), Coarse Particles Matter (PM), and Ammonia (NH).
View Article and Find Full Text PDFEnviron Sci Technol
December 2024
Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention, Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China.
Black carbon or elemental carbon (EC) in the atmosphere plays an ambiguous role in acute respiratory toxic effects. Here, we evaluate the contribution of EC to the short-term toxicity (including cytotoxicity and oxidative stress potency) of fine particulate matter (PM) on the human respiratory tract using in vitro airway organoids and cell lines. The toxic potency of EC per unit mass, including char and soot, is more than 2 orders of magnitude lower than that of polycyclic aromatic hydrocarbons (PAHs), which are coemitted from incomplete combustion.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!