Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 143
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 143
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 209
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 994
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3134
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 574
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 488
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Double transgenic tomato developed by AtDREB1A and BcZAT12 genes pyramiding showed significant drought tolerance by reducing oxidative stress with enhanced yield. Although a large number of efforts have been made by different researchers to develop abiotic stress tolerance tomato for improving yield using single gene, however, no reports are available which targets AtDREB1 and BcZAT12 genes together. Hence, in the present study, double transgenic plants were developed using AtDREB1 and BcZAT12 genes to improve yield potential with better drought tolerance. Double transgenic (DZ1-DZ5) tomato lines showed enhanced drought tolerance than their counterpart non-transgenic and single transgenic plants at 0, 07, 14, and 21 days of water deficit, respectively. Double transgenic plants showed increased activity of antioxidant enzymes, like catalase (CAT), superoxide dismutase (SOD), glutathione reductase (GR), ascorbate peroxidase (APX), dehydroascorbate reductase (DHAR), monodehydroascorbate reductase (MDHAR) and guaiacol peroxidase (POD), and accumulation of non-enzymatic antioxidants like ascorbic acid, glutathione as compared to non-transgenic and single transgenic. Additionally, the transcript analysis of antioxidant enzymes revealed the increased level of gene expression in double transgenic tomato lines. Developed double-transgenic tomato plants co-over-expressing both genes exhibited more enzymatic and non-enzymatic anti-oxidative activities as compared to the non-transgenic and single transgenic control, respectively. This is the preliminary report in tomato, which forms the basis for a multigene transgenic approach to cope with drought stress.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00299-021-02725-1 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!