Mechanical stimulation in wheat triggers age- and dose-dependent alterations in growth, development and grain characteristics.

Ann Bot

Institute of Biological, Environmental and Rural Sciences (IBERS), Aberystwyth University, Plas Gogerddan, Aberystwyth, UK.

Published: September 2021

Background And Aims: Wheat crops are exposed to a range of mechanical stimulations in their natural environment, yet we know very little about their response to such conditions. The aim of this study was to better understand the effect of mechanical stimulation on wheat growth and development, stem mechanical properties and grain measures. We focused on the following questions: (1) Does plant age affect the response to mechanical stimulation? (2) Is there a minimum threshold for the perception of mechanical stimuli? (3) Is the effect of manual brushing different to natural wind stimulation?

Methods: For age- and dose-response experiments, wheat plants were grown under controlled glasshouse conditions with brushing treatments applied using a purpose-built rig. The results of the controlled experiments are compared with those from an outside experiment where wheat plants were exposed to natural wind, with or without additional brushing. Detailed phenotypic measurements were conducted and treatment effects on grain characteristics were determined using micro-computed tomography imaging.

Key Results: Two-week-old wheat plants were particularly sensitive to mechanical stimulation by controlled brushing treatments. Amongst others, plants exhibited a large reduction in height and grain yield, and an increase in tillers, above-ground biomass and stiffness of stem segments. Plants responded significantly to doses as small as one daily brushstroke. Outdoor experiments by and large confirmed results from controlled environment experiments.

Conclusions: The morphological and developmental response to mechanical brushing treatment, in relation to vegetative above-ground biomass and grain yield, is dependent on plant age as well as the dose of the treatments. This study shows that mechanical stimulation of wheat impacts on a multitude of agriculturally relevant traits and provides a much needed advancement of our understanding of wheat thigmomorphogenesis and the potential applications of mechanical conditioning to control relevant traits.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8422892PMC
http://dx.doi.org/10.1093/aob/mcab070DOI Listing

Publication Analysis

Top Keywords

mechanical stimulation
16
stimulation wheat
12
wheat plants
12
mechanical
10
wheat
8
growth development
8
grain characteristics
8
plant age
8
response mechanical
8
natural wind
8

Similar Publications

By volume, cement concrete is one of the most widely used construction materials in the world. This requires a significant amount of Portland cement, and the cement industry, in turn, causes a significant amount of CO emissions. Therefore, the development of concrete with a reduced cement content is becoming an urgent problem for countries with a significant level of production and consumption of concrete.

View Article and Find Full Text PDF

Laminopathies represent a wide range of genetic disorders caused by mutations in gene-encoding proteins of the nuclear lamina. Altered nuclear mechanics have been associated with laminopathies, given the key role of nuclear lamins as mechanosensitive proteins involved in the mechanotransduction process. To shed light on the nuclear partners cooperating with altered lamins, we focused on Src tyrosine kinase, known to phosphorylate proteins of the nuclear lamina.

View Article and Find Full Text PDF

A leadless pacemaker (LP) is a modern alternative to a transvenous pacemaker, allowing certain complications to be avoided; however, some cannot be eliminated. To highlight the essential role of advanced speckle-tracking echocardiography (STE) in diagnosing pacing-induced cardiomyopathy (PICM) caused by an LP. A 79-year-old male, after LP implantation a year earlier, was admitted due to heart failure (HF).

View Article and Find Full Text PDF

Background: Vascular calcification (VC) is a dynamic, tightly regulated process driven by cellular activity and resembling the mechanisms of bone formation, with specific molecules playing pivotal roles in its progression. We aimed to investigate the involvement of the bone morphogenic proteins (, , , and ) system in this process. Our study used an advanced in vitro model that simulates the biological environment of the vascular wall, assessing the ability of a phosphate mixture to induce the osteoblastic switch in human coronary artery smooth muscle cells (HCASMCs).

View Article and Find Full Text PDF

The Interplay Between Muscular Activity and Pattern Recognition of Electro-Stimulated Haptic Cues During Normal Walking: A Pilot Study.

Bioengineering (Basel)

December 2024

School of Mechanical Engineering, Chung-Ang University, 84 Heukseok-Ro, Dongjak District, Seoul 06974, Republic of Korea.

This pilot study explored how muscle activation influences the pattern recognition of tactile cues delivered using electrical stimulation (ES) during each 10% window interval of the normal walking gait cycle (GC). Three healthy adults participated in the experiment. After identifying the appropriate threshold, ES as the haptic cue was applied to the gastrocnemius lateralis (GL) and biceps brachii (BB) of participants walking on a treadmill.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!