Gold nanostar@graphene quantum dot as a new colorimetric sensing platform for detection of cysteine.

Spectrochim Acta A Mol Biomol Spectrosc

Department of Analytical Chemistry, Faculty of Chemistry, University of Tabriz, Tabriz 5166616471, Iran. Electronic address:

Published: November 2021

We here report on a facile method for preparation of gold nanostar-graphene quantum dot (AuNS@GQD) composite, which produces highly active surfactant-free AuNSs. The etching reaction of this composite with NaSO was studied and used as a new sensing strategy for colorimetric detection of nM levels of cysteine. In the presence of NaSO, the shape of AuNSs changes to sphere-like nanoparticles, leading to a distinct color change of solution from light green to indigo. This phenomenon results from the redox reaction of Au atoms at the apexes and sharp corners of the NSs with oxygen which leads to the formation of [Au(SO)]. Our studies indicated that the stars with larger sizes show greater activity in etching reaction since they have more branches and sharper tips. Due to the strong coordination between Au and thiols, pre-added cysteine can protect the AuNSs from SO etching and so the shape and the color of AuNSs remain unaltered. This anti-etching effect was used for the detection of cysteine with the detection limit as low as 0.35 nM. The developed colorimetric sensor was validated by HPLC method and applied for analysis of human plasma samples.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.saa.2021.120010DOI Listing

Publication Analysis

Top Keywords

quantum dot
8
detection cysteine
8
aunss etching
8
etching reaction
8
gold nanostar@graphene
4
nanostar@graphene quantum
4
dot colorimetric
4
colorimetric sensing
4
sensing platform
4
detection
4

Similar Publications

Herein, a novel nanocomposite was developed to adjust the textural properties of metal-organic frameworks (MOFs) for adsorptive applications. To this end, nitrogen-doped carbon quantum dots/reduced graphene oxide nanocomposite (RC) was embedded into MIL-101(Cr) crystals, named RC-ML-x nanocomposites. The prepared nanoadsorbents were thoroughly characterized by different techniques.

View Article and Find Full Text PDF

Temperature-sensitive driving assembled fluorescence hydrogel based dual-mode sensor for adsorbing and detecting of heavy metal cadmium ions in food and water.

Food Chem

December 2024

State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Food Quality and Health of Tianjin, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China.

The denatured bovine serum albumin (dBSA) is coupled with the CdTe/CdS quantum dot and the resulting CdTe/CdS@dBSA complex is assembled and retained in the poly(n-isopropyl acrylamide) (PNIPAM) hydrogel via regulating temperature and pH to form the CdTe/CdS@dBSA-PNIPAM fluorescence hydrogel substrate, which is able to adsorb and sense cadmium ions (Cd). Based on this fluorescence hydrogel, a fluorescence and colorimetric dual-mode detection system is established to quantitatively detect Cd with a limit of detection (LOD) of 2.88 nM for fluorescence detection and 11.

View Article and Find Full Text PDF

IR-Driven Multisignal Conditioning for Multiplex Detection: Thermal-Responsive Triple DNA-Mediated Reconfigurable Photoelectrochemical/Photothermal Dual-Mode Strategy.

ACS Sens

January 2025

College of Chemistry, Jilin Province Research Center for Engineering and Technology of Spectral Analytical Instruments, Jilin University, Changchun 130012, China.

Superior to traditional multiplex photoelectrochemical (PEC) sensors, integrated multitarget assay on a single reconstructive electrode interface is promising in real-time detection through eliminating the need of specialized instrumentation and cumbersome interfacial modifications. Current interface reconstruction approaches including pH modulation and bioenzyme cleavage involve biohazardous and time-consuming operations, which cannot meet the demand for rapid, eco-friendly, and portable detection, which are detrimental to the development of multiplex PEC sensors toward portability. Herein, we report a pioneer work on IR-driven "four-to-one" multisignal conditioning to facile reconfigure electrode interface for multitarget detection via photoelectrochemical/photothermal dual mode.

View Article and Find Full Text PDF

Agro-processing industries generate a substantial quantity of biomass wastes. Conversion of these wastes into valuable material could be profitable considering both environmental and economic aspects. Among various biomass conversion methods, hydrothermal conversion can be used for co-production of biofuel and other valuable materials like carbon quantum dots (CQDs) and activated carbons.

View Article and Find Full Text PDF

For moiré bilayer TMD superlattices, full-configuration-interaction (FCI) calculations are presented that take into account both the intra-moiré-quantum-dot (MQD) charge-carrier Coulombic interactions, as well as the crystal-field effect from the surrounding moiré pockets (inter-moiré-QD interactions). The effective computational embedding strategy introduced here allows for an FCI methodogy that enables the complete interpretation of the counterintuitive experimental observations reported recently in the context of moiré TMD superlattices at integer fillings ν=2 and 4. Two novel states of matter are reported: (i) a genuinely quantum-mechanical supercrystal of sliding Wigner molecules (WMs) for unstrained moiré TMD materials (when the crystal field is commensurate with the trilobal symmetry of the confining potential in each embedded MQD) and (ii) a supercrystal of pinned Wigner molecules when the crystal field is incommensurate with the trilobal symmetry or straining of the whole material is involved.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!