Nanobiomaterials (NBMs) are a special category of nanomaterials used in medicine. As applications of NBMs are very similar to pharmaceuticals, their environmental release patterns are likely similar as well. Different pharmaceuticals were detected in surface waters all over the world. Consequently, there exists a need to identify possible NBM exposure routes into the environment. As the application of many NBMs is only carried out at specific locations (hospitals), average predicted environmental concentrations (PECs) may not accurately represent their release to the environment. We estimated the local release of poly(lactic-co-glycolic acid) (PLGA), which is investigated for their use in drug delivery, to Swiss surface waters by using population data as well as type, size and location of hospitals as proxies. The total mean consumption of PGLA in Switzerland using an explorative full-market penetration scenario was calculated to be 770 kg/year. 105 hospitals were considered, which were connected to wastewater treatment plants and the receiving water body using graphic information system (GIS) modelling. The water body dataset contained 20,167 river segments and 210 lake polygons. Using the discharge of the river, we were able to calculate the PECs in different river segments. While we calculated high PLGA releases of 2.24 and 2.03 kg/year in large cities such as Geneva or Zurich, the resulting local PECs of 220 and 660 pg/l, respectively, were low due to the high river discharge (330 and 97 m/s). High PLGA concentrations (up to 7,900 pg/l) on the other hand were calculated around smaller cities with local hospitals but also smaller receiving rivers (between 0.7 and 1.9 m/s). Therefore, we conclude that population density does not accurately predict local concentration hotspots of NBMs, such as PLGA, that are administered in a hospital context. In addition, even at the locations with the highest predicted PLGA concentrations, the expected risk is low.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.envpol.2021.117399 | DOI Listing |
Cell Death Discov
January 2025
Institute of Biopharmaceutical Sciences, College of Pharmaceutical Sciences, National Yang Ming Chiao Tung University, Taipei, Taiwan.
TP53 mutations are recognized to correlate with a worse prognosis in individuals with non-small cell lung cancer (NSCLC). There exists an immediate necessity to pinpoint selective treatment for patients carrying TP53 mutations. Potential drugs were identified by comparing drug sensitivity differences, represented by the half-maximal inhibitory concentration (IC50), between TP53 mutant and wild-type NSCLC cell lines using database analysis.
View Article and Find Full Text PDFPLoS One
January 2025
State Key Laboratory of Automotive Safety and Energy, School of Vehicle and Mobility, Tsinghua University, Beijing, China.
This study tried to focus on the older drivers' group and explore the impact factors of injury severity involving older drivers from geo-spatial analysis. To reach the goal, a spatial analysis was proposed employing geographic information systems (GIS) with a case study application to two counties in Nevada. First, crash clusters were explored using Density-Based Spatial Clustering of Applications with Noise (DBSCAN) approach to investigate the spatial crash pattern for older drivers, and determine high risk locations of injury severity.
View Article and Find Full Text PDFEnzymatic asymmetric synthesis of l-phenylglycine by amino acid dehydrogenases has potential for industrial applications; however, this is hindered by their low catalytic efficiency toward high-concentration substrates. We identified and characterized a novel leucine dehydrogenase (LeuDH) with a high catalytic efficiency for benzoylformic acid via directed metagenomic approaches. Further, we obtained a triple-point mutant LeuDH-EER (D332E/G333E/L334R) with improved stability and catalytic efficiency through the rational design of distal loop 13.
View Article and Find Full Text PDFWorld J Cardiol
January 2025
Department of Surgical Urology, Hebei Province Xingtai People's Hospital, Xingtai 054031, Hebei Province, China.
Background: The increasing risk of cardiovascular disease (CVD) associated with worsening environmental exposure is a critical health concern garnering global research attention.
Aim: To systematically assess the scope and characteristics of research on the relationship between environmental exposure and CVD.
Methods: A thorough examination of publications on the relationship between environmental exposure and CVD from 1999 to 2022 was carried out by extensively screening the literature using the Web of Science Core Collection.
Mar Pollut Bull
January 2025
Christian-Albrechts-University of Kiel, Department of Marine Climate Research, Kiel, Germany.
Concerns about pollutants in the environment are increasing, with substances such as plastic additives drawing particular concern due to their potential harmful effects on organisms. This study investigates current levels of several contaminants in the Kiel Fjord. Some pose serious health risks to aquatic life.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!