Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Selective removal of phenolic compounds (PCs) from de-oiled sunflower kernel is generally considered a key step for food applications, but this often leads to protein loss. PC removal yield and protein loss were assessed during an aqueous or aqueous ethanol washing process with different temperatures, pH-values and ethanol contents. PC yield and protein loss increased when the ethanol content was < 60% or when a higher temperature was applied. Our main finding is that preventing protein loss should be the key objective when selecting process conditions. This can be achieved using solvents with high ethanol content. Simulation of the multi-step exhaustive process showed that process optimization is possible with additional washing steps. PC yield of 95% can be achieved with only 1% protein loss using 9 steps and 80% ethanol content at 25℃. The functional properties of the resulting concentrates were hardly altered with the use of high ethanol solvents.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.foodchem.2021.130204 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!