Objective: This article presents an automatic image processing framework to extract quantitative high-level information describing the micro-environment of glomeruli in consecutive whole slide images (WSIs) processed with different staining modalities of patients with chronic kidney rejection after kidney transplantation.

Methods: This four-step framework consists of: 1) approximate rigid registration, 2) cell and anatomical structure segmentation 3) fusion of information from different stainings using a newly developed registration algorithm 4) feature extraction.

Results: Each step of the framework is validated independently both quantitatively and qualitatively by pathologists. An illustration of the different types of features that can be extracted is presented.

Conclusion: The proposed generic framework allows for the analysis of the micro-environment surrounding large structures that can be segmented (either manually or automatically). It is independent of the segmentation approach and is therefore applicable to a variety of biomedical research questions.

Significance: Chronic tissue remodelling processes after kidney transplantation can result in interstitial fibrosis and tubular atrophy (IFTA) and glomerulosclerosis. This pipeline provides tools to quantitatively analyse, in the same spatial context, information from different consecutive WSIs and help researchers understand the complex underlying mechanisms leading to IFTA and glomerulosclerosis.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.cmpb.2021.106157DOI Listing

Publication Analysis

Top Keywords

slide images
8
ifta glomerulosclerosis
8
automatic framework
4
framework fusing
4
fusing differently
4
differently stained
4
stained consecutive
4
consecutive digital
4
digital slide
4
images case
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!