Livestock movements are a common pathway for the spread infectious diseases in a population. An understanding of livestock movement patterns is needed to understand national transmission risks of highly infectious diseases during epidemics. Social Network Analysis (SNA) is an approach that helps to describe the relationships among individuals and the implications of those relationships. We used SNA to describe the contact structure of livestock movements throughout the contiguous U.S. from April 1, 2015 to March 31, 2016. We describe 4 network types: beef cattle, dairy cattle, swine, and small ruminant. Livestock movement data were sourced from Interstate Certificates of Veterinary Inspection (ICVI) while county-level farm demographic data were from the National Agricultural Statistics Service (NASS). In the described networks, nodes are represented by counties and arcs by shipments between nodes; the networks were weighted based on the number of shipments between nodes. For the analyses, movement data were aggregated at the county level and on an annual basis. Measures of centrality and cohesiveness were computed and identification of trade-communities in all networks was conducted. During the study period, a total of 219,042 movements were recorded and beef cattle movements accounted for 63 % of all movements. At least 70 % of U.S. counties were present in each of the networks, but the density of arcs was less than 2% in all networks. In the beef cattle network, counties with high out-degree were strongly correlated (0.8) with the number of beef cows per county while for the dairy cattle network a strong correlation (>0.86) was found with the number of dairy cattle per km at the county level. All networks were found to have between 4 and 6 large communities (50 counties or more per community), and were geographically clustered except for the communities in the small ruminant network. Outputs reported in these analyses can help to understand the structure of the contact networks for beef cattle, dairy cattle, swine, and small ruminants. They may also be used in conjunction with simulation modeling to evaluate spread of highly infectious disease such as foot-and-mouth disease at the national level and to evaluate the application of intervention strategies.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.prevetmed.2021.105391 | DOI Listing |
Food Chem
January 2025
Laboratory of Agricultural and Food Biophysics, Institute of Biophysics, College of Science, Northwest A&F University, Yangling, Shaanxi 712100, China; Laboratory of Muscle Biology and Meat Science, National Beef Cattle Improvement Center, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China; Laboratory of Meat Quality Analysis and Products Development, Ningxia Xihaigu Institute of High-end Cattle Industry, Haiyuan, Ningxia 755299, China. Electronic address:
Multifunctional pH-responsive films were fabricated via layer-by-layer deposition of gelatin, chitosan, and carboxymethyl cellulose (CMC), incorporating selenium nanoparticles (SeNPs) and beetroot extract (BTE), to monitor and preserve beef freshness. SeNPs were synthesized and characterized via various techniques. BTE exhibited promising functional properties, and films demonstrated a significant color transition from red to yellow across pH 2-14.
View Article and Find Full Text PDFJ Vet Diagn Invest
January 2025
Large Animal Clinical Sciences, Western College of Veterinary Medicine, Saskatoon, Saskatchewan, Canada.
An apparent outbreak of fenugreek forage toxicosis occurred in a beef cattle herd near Moose Jaw, Saskatchewan in February-May 2022. The herd had consumed fenugreek hay from late fall to early winter. Clinical signs included various degrees of weakness, ataxia, knuckling, walking on hocks, and recumbency.
View Article and Find Full Text PDFTransl Anim Sci
December 2024
Department of Animal Science, Texas A&M AgriLife Research, Texas A&M University, College Station, TX 77843-2471, USA.
The National Beef Quality Audit ()-2022 serves as a benchmark of the current market cow and bull sectors of the U.S. beef industry and allows comparison to previous audits as a method of monitoring industry progress.
View Article and Find Full Text PDFFood Res Int
January 2025
Embrapa Agroindústria de Alimentos, Av. das Américas, 29501, CEP 23020-470 Rio de Janeiro, Brazil. Electronic address:
"Low Carbon Brazilian Beef" (LCBB) represents a Brazilian concept brand that certifies livestock systems adopting specific technical guidelines to minimize methane gas emissions from cattle. Understanding consumers' perceptions of this brand concept can help develop strategies to promote its consumption. The objective of this study was to investigate the perception of Brazilian consumers living in the state of Rio de Janeiro regarding the LCBB through free word association and to evaluate the influence of socio-demographic variables, green consumption values and frequency of beef consumption in associations.
View Article and Find Full Text PDFFood Res Int
January 2025
Gembloux Agro-Bio Tech, University of Liège, Gembloux B-5030, Belgium.
To get insight into the thawing and salting in recovery and protection mechanisms on quality in frozen meat after subsequent cooking. The myofiber morphological-water evolution and quality changes in beef during freezing-thawing-cooking and freezing-cooking treatments were investigated. The cooking losses of fresh-cooked, frozen-cooked, and frozen-thawed-cooked samples were 27.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!