Neurite Orientation Dispersion and Density Imaging (NODDI) and Bingham-NODDI diffusion MRI models are nowadays very well-known models in the field of diffusion MRI as they represent powerful tools for the estimation of brain microstructure. In order to efficiently translate NODDI imaging findings into the diagnostic clinical practice, a test-retest approach would be useful to assess reproducibility and reliability of NODDI biomarkers, thus providing validation on precision of different fitting toolboxes. In this context, we conducted a test-retest study with the aim to assess the effects of different factors (i.e. fitting algorithms, multiband acceleration, shell configuration, age of subject and hemispheric side) on diffusion models reliability, assessed in terms of Intra-class Correlation Coefficient (ICC) and Variation Factor (VF). To this purpose, data from pediatric and adult subjects were acquired with Simultaneous-MultiSlice (SMS) imaging method with two different acceleration factor (AF) and four b-values, subsequently combined in seven shell configurations. Data were then fitted with two different GPU-based algorithms to speed up the analysis. Results show that each factor investigated had a significant effect on reliability of several diffusion parameters. Particularly, both datasets reveal very good ICC values for higher AF, suggesting that faster acquisitions do not jeopardize the reliability and are useful to decrease motion artifacts. Although very small reliability differences appear when comparing shell configurations, more extensive diffusion parameters variability results when considering shell configuration with lower b-values, especially for simple model like NODDI. Also fitting tools have a significant effect on reliability, but their difference occurs in both datasets and AF, so it appears to be independent from either misalignment and motion artifacts, or noise and SNR. The main achievement of the present study is to show how 10 min multi-shell diffusion MRI acquisition for NODDI acquisition can have reliable results in WM. More complex models do not appear to be more prone to less data acquisition as well as noisier data thus stressing the idea of Bingham-NODDI having greater sensitivity to true subject variability.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.neuroimage.2021.118234DOI Listing

Publication Analysis

Top Keywords

diffusion mri
12
shell configuration
8
shell configurations
8
diffusion parameters
8
motion artifacts
8
reliability
7
diffusion
7
noddi
6
models
5
reliability multiband
4

Similar Publications

Background: Emerging evidence suggests that there are morphological and physiological changes to the vastus lateralis after an anterior cruciate ligament (ACL) tear. However, it is unclear whether these alterations are limited to just the vastus lateralis or are more representative of widespread changes across the thigh musculature and/or if these changes precede reconstruction. The purpose of this study was to determine T1ρ relaxation time, a measure of extracellular matrix organization in muscle, and physiological cross-sectional area (PCSA) for muscles of the quadriceps and hamstrings of the ACL-deficient and contralateral limbs soon after ACL injury.

View Article and Find Full Text PDF

Genetic information is involved in the gradual emergence of cortical areas since the neural tube begins to form, shaping the heterogeneous functions of neural circuits in the human brain. Informed by invasive tract-tracing measurements, the cortex exhibits marked interareal variation in connectivity profiles, revealing the heterogeneity across cortical areas. However, it remains unclear about the organizing principles possibly shared by genetics and cortical wiring to manifest the spatial heterogeneity across cortex.

View Article and Find Full Text PDF

Background: Thick fetal corpus callosum (CC) is a rare finding and its significance in isolation is not clear. In this retrospective study, we aim to gain insight into the microarchitecture of CC in a cohort of fetuses with thick and short CC (isolated or associated with mild extra-/intracranial abnormalities) as seen on ultrasound (US), by using prenatal magnetic resonance (MR) diffusion tensor imaging (DTI) with fiber tractography, thereby allowing better characterization for postnatal prognosis.

Methods: Twelve fetuses met the inclusion criteria on US.

View Article and Find Full Text PDF

We applied an MRI technique diffusion tensor imaging along the perivascular space (DTI-ALPS) for assessing glymphatic system (GS) in a genome-wide association study (GWAS) and phenome-wide association study (PheWAS) of 40,486 European individuals. Exploratory analysis revealed 17 genetic loci significantly associating with the regional DTI-ALPS index. We found 58 genes, including and , which prioritized in the DTI-ALPS index subtypes and associated with neurodegenerative diseases.

View Article and Find Full Text PDF

Background: Autologous fat injection in facial reconstruction is a common cosmetic surgery. Although cerebral fat embolism (CFE) as a complication is rare, it carries serious health risks.

Case Summary: We present a case of a 29-year-old female patient who developed acute CFE following facial fat filling surgery.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!