Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Renal ischemia/reperfusion injury (IRI) is the major cause of acute kidney injury. However, mechanisms underlying the sudden loss in kidney function and tissue injury remain to be fully elucidated. Here, we performed RNA sequencing to systematically compare the transcriptome differences between IR injured kidneys and sham kidneys. We observed that mitochondrial dynamics was destructed in renal IRI. Expression of mitochondrial fusion-associated genes was reduced, whereas expression of mitochondrial fission-related genes was increased in renal IRI, and these findings were further confirmed by mitochondrial morphological observations. By screening 19 purinergic receptors, we noticed that P2RX1 expression was markedly upregulated in renal IRI. RNA sequencing and mitochondrial morphological observations revealed that mitochondrial dynamics was preserved in P2RX1 genetic knockout (P2rx1) mice. Neutrophil extracellular traps (NETs) were reported to be essential for tissue injury in renal IRI, but the detailed mechanism remained unclear. In the present study, we found that P2RX1 favored the formation of neutrophil extracellular traps (NETs) in IRI, and NETs was essential for the impairment of mitochondrial dynamics. Mechanistically, P2RX1-involved metabolic interaction between platelets and neutrophils supported NETs formation. Activation of P2RX1 promoted platelets ATP release, which subsequently contributed to neutrophil glycolytic metabolism and NETs generation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.phrs.2021.105712 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!