Ctenopharyngodon idella Tollip regulates MyD88-induced NF-κB activation.

Dev Comp Immunol

Department of Bioscience, College of Life Science, Nanchang University, Nanchang, 330031, China. Electronic address:

Published: October 2021

Toll-interacting protein (Tollip) and MyD88 are key components of the TLR/IL-1R signaling pathway in mammals. MyD88 is known as a universal adaptor protein involving in TLR/IL-1R-induced NF-κB activation. Tollip is a crucial negative regulator of TLR-mediated innate immune responses. Previous studies have demonstrated that teleost Tollip served as a negative regulator of MyD88-dependent TLR signaling pathway. However, the mechanism is still unclear. In particular, the effect of TBD, C2, and CUE domains of Tollip on MyD88-NF-κB signaling pathway remains to be elucidated. In this study, we found that the response of grass carp Tollip (CiTollip) to LPS stimulation was faster and stronger than that of poly I:C treatment, and CiTollip diminished the expression of tnf-α induced by LPS. Further assays indicated that except for the truncated mutant of △CUE2 (1-173 aa), wild type CiTollip and other truncated mutants (△N-(52-276 aa), △C2-(173-276 aa) and △CUE1-(1-231 aa)) could associate with MyD88 and negatively regulate MyD88-induced NF-κB activation. It suggested that the C-terminal (173-276 aa), in particular the connection section between C2 and CUE domains (173-231 aa), played a pivotal role in suppressing MyD88-induced activation of NF-κB.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.dci.2021.104162DOI Listing

Publication Analysis

Top Keywords

nf-κb activation
12
signaling pathway
12
myd88-induced nf-κb
8
negative regulator
8
cue domains
8
tollip
6
ctenopharyngodon idella
4
idella tollip
4
tollip regulates
4
regulates myd88-induced
4

Similar Publications

Background: Traumatic anterior shoulder dislocation is the most common type of joint dislocation, with an incidence of 11 to 29 per 100 000 persons per year. Controversy still surrounds the recommendations for treatment and the available procedures for surgical stabilization.

Methods: This review is based on pertinent publications (2014-2024) that were retrieved by a selective search in the PubMed and Google Scholar databases.

View Article and Find Full Text PDF

Cardiac acetylcholinesterase and butyrylcholinesterase have distinct localization and function.

Am J Physiol Heart Circ Physiol

January 2025

Comenius University Bratislava, Faculty of Pharmacy, Department of Pharmacology and Toxicology, Bratislava, Slovakia.

Cholinesterase (ChE) inhibitors are under consideration to be used in the treatment of cardiovascular pathologies. A prerequisite to advancing ChE inhibitors into the clinic is their thorough characterization in the heart. The aim here was to provide a detailed analysis of cardiac ChE to understand their molecular composition, localization, and physiological functions.

View Article and Find Full Text PDF

This study reports on the development of a highly sensitive non-enzymatic electrochemical sensor based on a two-dimensional TiCT/MWCNT-OH nanocomposite for the detection of paraoxon-based pesticide. The synergistic effect between the TiCT nanosheet and the functionalized multi-walled carbon nanotubes enhanced the sensor's conductivity and catalytic activity. The nanocomposite demonstrates superior electrochemical and electroanalytical performance compared to the pristine TiCT and MWCNT-OH in detecting paraoxon-ethyl in fruit samples (green and red grapes), with a linear response range from 0.

View Article and Find Full Text PDF

Affinity descriptor of metal catalysts: concept, measurement and application of oxygen affinity in the catalytic transformation of oxygenates.

Chem Soc Rev

January 2025

National-local Joint Engineering Research Center of Biomass Refining and High-quality Utilization, Changzhou University, Changzhou 213164, China.

Multiple oxygenate groups in biomass-based feedstocks are open to multiple catalytic pathways and products, typically resulting in low selectivity for the desired products. In this context, strategies for rational catalyst design are critical to obtain high selectivity for the desired products in biomass upgrading. The Sabatier principle provides a conceptual framework for designing optimal catalysts by following the volcanic relationship between catalyst activity for a reaction and the binding strength of a substrate on a catalyst.

View Article and Find Full Text PDF

Amino-quinolines are potential candidates that may provide some insight into the current chemotherapeutic research due to their demonstrated anti-cancer activity. This led us to synthesize and explore a new amino-azo-quinoline ligand H2L 1 and its square planar nickel(II) complexes [Ni(HL)(OAc)], 2 and [Ni(HL)Cl], 3 and the structures were determined by SCXRD. Theoretical investigation of redox orbitals of the complexes discloses that the reduction process is due to ligand reduction whereas both metal and ligand are contributing towards oxidation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!