During the five stages of smoked dry-cured ham processing, proteolysis and protein oxidation were simultaneously detected in the Biceps femoris (BF) and Semimembranosus (SM) muscles. Proteolysis was more advanced in BF than in SM throughout the process of production. The total FAA increased significantly (p < 0.05) throughout the processing, resulting in higher total FAA content in BF than in SM muscle. SDS-PAGE revealed progressive degradation of sarcoplasmic proteins of investigated muscles, with the pronounced changes for the 69.9-41.7 kDa region. SDS-PAGE of BF showed more intense degradation of myofibrillar proteins due to greater proteolysis in BF. Electrophoresis of myofibrillar proteins evidenced the marked degradation of 130 kDa, 96.7 kDa and 27-20.7 kDa bands in both muscles. A similar trend was observed for protein oxidation in BF and SM, with the final values of 26.36 and 23.7 nmol carbonyls/mg proteins, respectively. The Pearson correlation revealed a strong relationship between protein oxidation and proteolysis.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.foodchem.2021.130207 | DOI Listing |
ACS Chem Biol
January 2025
Institut für Pharmazeutische Chemie, Goethe-University Frankfurt, Biozentrum, Max-von-Laue-Str. 9, 60438 Frankfurt am Main, Germany.
Small molecule degraders such as PROteolysis TArgeting Chimeras (PROTACs) and molecular glues are new modalities for drug development and important tools for target validation. When appropriately optimized, both modalities lead to proteasomal degradation of the protein of interest (POI). Due to the complexity of the induced multistep degradation process, controls for degrader evaluation are critical and commonly used in the literature.
View Article and Find Full Text PDFSci Adv
January 2025
State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
The COP9 signalosome (CSN) is a highly conserved protein complex in eukaryotes, with CSN5 serving as its critical catalytic subunit. However, the role of CSN5 in plant immunity is largely unexplored. Here, we found that suppression of in rice enhances resistance against the fungal pathogen and the bacterial pathogen pv.
View Article and Find Full Text PDFNeuromolecular Med
January 2025
Department of Rehabilitation Medicine, The Affiliated Jiangning Hospital of Nanjing Medical University, No. 168 Gushan Road, Dongshan Street, Jiangning District, Nanjing, 211199, Jiangsu, China.
Muscle atrophy in pathological or diseased muscles arises from an imbalance between protein synthesis and degradation. Elevated levels of interleukin-6 (IL-6) are a hallmark of ischemic stroke and have been associated with muscle atrophy in certain pathological contexts. However, the mechanisms by which IL-6 induces muscle atrophy in the context of stroke remain unclear.
View Article and Find Full Text PDFAlzheimers Dement
December 2024
University of Kansas Medical Center, Kansas City, KS, USA.
Background: Understanding the proteomes of specific cell types within the brain is crucial for elucidating the mechanisms underlying Alzheimer's disease (AD). However, the isolation and analysis of these diverse and low-abundance cell populations remain significant challenges. This study aims to assess GeoMxTM Digital Spatial Profiler (DSP) by NanoString Technologies (NanoString, Seattle, USA) capable of spatially resolving protein expression profile of AD brains extracted from formalin-fixed paraffin-embedded (FFPE) specimens.
View Article and Find Full Text PDFAlzheimers Dement
December 2024
Harvard Medical School and Brigham & Women's Hospital, Boston, MA, USA.
SORL1 (SORLA, LR11) is a large (2214 residue), multi-domain type 1 integral membrane protein that is the product of the SORL1 gene. In neurons, where it is highly expressed, SORL1 functions as both a substrate of and a cargo receptor for the retromer multi protein complex that is a master regulator of protein trafficking out of the early endosome. The SORL1-Vps26b retromer, in particular, is dedicated to the recycling of cell surface proteins, including APP and AMPA receptor subunit GLUA1, back to the plasma membrane.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!