The specificity of pepsin, the major protease of gastric digestion, has been previously investigated, but only regarding the primary sequence of the protein substrates. The present study aimed to consider in addition physicochemical and structural characteristics, at the molecular and sub-molecular scales. For six different proteins submitted to in vitro gastric digestion, the peptide bonds cleaved were determined from the peptides released and identified by LC-MS/MS. An original statistical approach, based on propensity scores calculated for each amino acid residue on both sides of the peptide bonds, concluded that preferential cleavage occurred after Leu and Phe, and before Ile. Moreover, reliable statistical models developed for predicting peptide bond cleavage, highlighted the predominant role of the amino acid residues at the N-terminal side of the peptide bonds, up to the seventh position (P7 and P7'). The significant influence of hydrophobicity, charge and structural constraints around the peptide bonds was also evidenced.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.foodchem.2021.130098 | DOI Listing |
Nano Lett
January 2025
Zhejiang Engineering Research Center for Tissue Repair Materials and Wenzhou Key Laboratory of Biomaterials and Engineering and Wenzhou Key Laboratory of Biophysics, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325001, China.
Saccharides and peptides with markedly disparate stereochemical features serve as pivotal chiral molecular partners in living systems. The importance of glycosylation in influencing glycopeptide self-assembly has been recognized. However, how different chiral combinations of saccharides and peptides influence the macroscopic hydrogel mechanics, fiber nanomechanics, asymmetric molecular packing, and thermodynamic changes during glycopeptide self-assembly remains unknown.
View Article and Find Full Text PDFComput Biol Chem
January 2025
National Institute for Genomics and Advanced Biotechnology (NIGAB), National Agricultural Research Center (NARC), Pakistan. Electronic address:
A major threat to world health is the high death rate from gastrointestinal (GI) cancer, especially in Asia, South America, and Europe. The new approaches are needed because of the complexity and heterogeneity of gastrointestinal (GI) cancer, which has made the development of effective treatments difficult. To investigate the potential of peptide-based therapies that target the P21 Activated Kinase 1 (PAK1) in GI cancer, we are using the DBsORF database to predict peptides from the genomes of two bacterial strains: Lactobacillus plantarum and Pediococcus pentosaceus.
View Article and Find Full Text PDFAnalyst
January 2025
Department of Proteomics, Mass Spectrometry Laboratory, Center for Genetic Engineering and Biotechnology, 31 Avenue, Cubanacan, Playa, Havana, Cuba.
Keyhole limpet haemocyanins (KLH1 and KLH2) from , are multi-subunit oxygen-carrying metalloproteins of approximately 3900 amino acids, that are widely used as carrier proteins in conjugate vaccines and in immunotherapy. KLHs and their derived conjugate vaccines are poorly characterized by LC-MS/MS due to their very stable supramolecular structures with megadalton molecular mass, and their resistance to efficient digestion with standard protocols. KLH1 and KLH2 proteins were conjugated to the conserved P0 peptide (pP0), derived from the P0 acidic ribosomal protein of sp.
View Article and Find Full Text PDFMicrob Cell Fact
January 2025
Lab of Environmental and Life Sciences, University of Nova Gorica, Vipavska cesta 13, Nova Gorica, 5000, Slovenia.
Background: E. coli still remains the most commonly used organism to produce recombinant proteins in research labs. This condition is mirrored by the attention that researchers dedicate to understanding the biology behind protein expression, which is then exploited to improve the effectiveness of the technology.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
College of Food Science and Engineering, Gansu Agricultural University, Lanzhou, China.. Electronic address:
The present study intended to investigate the properties of collagen peptide (CP)-astragaloside (AG) nanocomplexes (CPANs) improved oxidized hydroxypropyl starch (OHS)/chitosan (CS) (OC) film and to explore the preservation of chilled beef. The results indicated that AG significantly enhanced the stability, antioxidant capacity, and antibacterial properties of CP through mechanisms like static quenching and hydrophobic interactions. The incorporation of CPANs improved thickness, swellability, and water vapor blocking, UV-blocking and mechanical properties, antioxidant and antibacterial activity of OC film.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!