Parecoxib alleviates the motor behavioral decline of aged rats by ameliorating mitochondrial dysfunction in the substantia nigra via COX-2/PGE2 pathway inhibition.

Neuropharmacology

Department of Neurobiology, Hebei Medical University, Shijiazhuang, 050017, China; Neuroscience Research Center, Hebei Medical University, Shijiazhuang, 050017, China; Hebei Key Laboratory of Forensic Medicine, Department of Forensic Medicine, Hebei Medical University, Shijiazhuang, 050017, China. Electronic address:

Published: August 2021

Mitochondrial dysfunction manifests as an early event in the substantia nigra (SN) in aging and Parkinson disease. Cyclooxygenase 2 (COX-2), the rate-limiting enzyme in the prostaglandin E2 (PGE2) synthesis pathway, is implicated in aging and age-related neurodegenerative diseases; moreover, inhibition of COX-2 expression has been shown to be neuroprotective for nigrostriatal dopaminergic neurons. However, it is not known whether the neuroprotective effect of COX-2 inhibition is related to improved mitochondrial function during the aging process. To this end, we explored the effects of the selective COX-2 inhibitor parecoxib on mitochondrial function in the SN of aged rats. We found that parecoxib administration to aged rats for 10 weeks decreased COX-2/PGE2 expression, increased tyrosine hydroxylase and dopamine transporter expression in nigrostriatal dopaminergic neurons, and alleviated motor behavioral decline. Decreased malondialdehyde levels and an increased GSH/GSSG ratio as well as enhanced enzymatic activities of catalase and manganese superoxide dismutase in parecoxib-treated aged rats indicate that parecoxib administration elevated antioxidative ability in the SN during the aging process. Parecoxib treatment to aged rats promoted mitochondrial biogenesis by upregulating PGC-1α/NRF-1/TFAM, enhancing mitochondrial fusion by decreasing Drp1 levels and increasing Mfn1 and OPA1 levels, and activated mitophagy by increasing PINK1/Parkin levels while reducing p62/SQSTM1 levels, thereby coordinating mitochondrial homeostasis via inhibiting the COX-2/PGE2 pathway. Thus, our results strongly support the conclusion that parecoxib treatment is conducive to improving mitochondrial dysfunction in the SN upon aging in rats.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.neuropharm.2021.108627DOI Listing

Publication Analysis

Top Keywords

aged rats
20
mitochondrial dysfunction
12
motor behavioral
8
behavioral decline
8
mitochondrial
8
substantia nigra
8
cox-2/pge2 pathway
8
nigrostriatal dopaminergic
8
dopaminergic neurons
8
mitochondrial function
8

Similar Publications

Purpose: To investigate potential modes of programmed cell death in the lens epithelial cells (LECs) of patients with early age-related cortical cataract (ARCC) and to explore early-stage intervention strategies.

Methods: Anterior lens capsules were collected from early ARCC patients for comprehensive analysis. Ultrastructural examination of LECs was performed using transmission electron microscopy.

View Article and Find Full Text PDF

Distraction osteogenesis is a valuable clinical technique used to address length discrepancies in long bone deformities. This procedure involves performing an osteotomy at an appropriate site in the bone and correcting the deformity through an extension system. This research aims to investigate the efficacy of a newly developed device for use in rat tibias and to provide an alternative to existing devices used in animal experiments.

View Article and Find Full Text PDF

Age-related muscle wasting, sarcopenia is an extensive loss of muscle mass and strength with age and a major cause of disability and accidents in the elderly. Mechanisms purported to be involved in muscle ageing and sarcopenia are numerous but poorly understood, necessitating deeper study. Hence, we employed high-throughput RNA sequencing to survey the global changes in protein-coding gene expression occurring in skeletal muscle with age.

View Article and Find Full Text PDF

Age-dependent increase in apoptosis is associated with dysregulation of miR-92a/Akt/mTOR and NF-κB signaling pathways in male rats.

Neurosci Lett

January 2025

Neurophysiology Research Center, Cellular and Molecular Medicine Research Institute, Urmia University of Medical Sciences, Urmia, Iran. Electronic address:

Brain aging is the leading risk factor for most neurodegenerative diseases and has been linked with high rates of neuron loss. Thus, identifying molecular mechanisms underlying neuron loss and pharmacological modulation may be of great importance for slowing or preventing age-related diseases. Herein, we investigated the roles of miR-92a, Akt, mTOR, and NF-κB in age-associated apoptosis in the hippocampus (a critical structure involved in brain aging) of male rats alone and in combination with prazosin.

View Article and Find Full Text PDF

Synergistic Effects of Omega-3 Fatty Acids and Physical Activity on Oxidative Stress Markers and Antioxidant Mechanisms in Aged Rats.

Nutrients

December 2024

Institute of Medical Chemistry, Biochemistry and Clinical Biochemistry, Comenius University, Faculty of Medicine, Sasinkova 2, 811 08 Bratislava, Slovakia.

Background: Aging induces degenerative processes in the body, contributing to the onset of various age-associated diseases that affect the population. Inadequate dietary habits and low physical activity are major contributors to increased morbidity during aging. This study aimed to investigate the combined effects of omega-3 fatty acid supplementation and physical activity on the markers of oxidative stress and antioxidant defense mechanisms in aged male Wistar rats (23-24 months).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!