In situ Raman enhancement strategy for highly sensitive and quantitative lateral flow assay.

Anal Bioanal Chem

Key Laboratory for Chemical Biology of Fujian Province, MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, Collaborative Innovation Center of Chemistry for Energy Materials, State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, Fujian, China.

Published: January 2022

AI Article Synopsis

Article Abstract

As a paper-based analytical platform, lateral flow assay (LFA) gets benefit from the rapid analysis, low cost, high selectivity, good stability, and user-friendliness, and thus has been widely used in rapid screening or assisted diagnosis. Nevertheless, LFA still suffers from low detection sensitivity via the naked eye, limiting its applications to qualitative and semi-quantitative tests. To enhance the signal readout, various nanoparticle signal tags have been employed to replace traditional colloidal gold nanoparticles (AuNPs), such as fluorescent nanoparticles (FNPs), magnetic nanoparticles (MNPs), and Raman reporter-labeled nanoparticles. In particular, Raman reporter-labeled nanoparticles are extremely sensitive due to remarkable signal enhancement effect on metal surface. However, the application of LFA is still hampered by the poor stability of Raman reporter-labeled nanoparticles. Herein, we developed an in situ Raman enhancement strategy to create a surface-enhanced Raman scattering (SERS) signal on the AuNPs, shortened as "i-SERS," which not only preserves the original advantages of the colloidal gold strip (AuNPs-LFA), but also realizes highly sensitive and quantitative detection. We applied the i-SERS for procalcitonin (PCT) detection. The experimental process takes only 16 min, and the limit of detection (LOD) is 0.03 ng mL, far below the value using AuNPs-LFA. These results indicate that i-SERS assay was highly sensitive and suitable for the rapid detection of PCT.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00216-021-03419-zDOI Listing

Publication Analysis

Top Keywords

highly sensitive
12
raman reporter-labeled
12
reporter-labeled nanoparticles
12
situ raman
8
raman enhancement
8
enhancement strategy
8
sensitive quantitative
8
lateral flow
8
flow assay
8
colloidal gold
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!