In this study, modified headspace solid-phase microextraction (HS-SPME) coupled with gas chromatography-mass spectrometry (GC-MS) and electronic nose (E-nose) were utilized to investigate the dynamic aroma changes of Lentinula edodes (L. edodes) at different stages of vacuum freeze drying (VFD). The extraction efficiency of volatile compounds from vacuum freeze-dried L. edodes was improved by optimizing five parameters of the HS-SPME. A total of 50 volatiles were identified in L. edodes from different VFD stages by GC-MS. Alcohols, aldehydes, and volatile sulfur-containing compounds (VSCs) were the main flavor constituents of fresh L. edodes, frozen L. edodes, and secondary dried L. edodes. Aldehydes, ketones, and VSCs were the main aroma groups in L. edodes after primary drying. There were 20 volatiles as key odorants with the odor activity values greater than 1, in which esters appeared only before secondary drying of L. edodes. These findings could contribute to a comprehensive insight into the formation mechanism of flavor in the VFD process of L. edodes. PRACTICAL APPLICATIONS: Lentinula edodes is the second most widely cultivated edible fungus worldwide. It is considered a valuable health food not just because of its abundance of nutrients but also because of its delicious taste. This study investigated the regularity regarding the changes of volatile compounds in L. edodes during vacuum freeze drying. The results of the present study offer valuable knowledge for the formation mechanism of volatile substances in the drying process of L. edodes, which can be beneficial to promote the development and utilization of flavor substances in L. edodes.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/jfbc.13814 | DOI Listing |
Front Nutr
January 2025
College of Tea and Food Science, Xinyang Normal University, Xinyang, China.
Tea flower, with characteristic flavor formed during blooming, are a significant tea resource. However, studies on the volatile compounds of tea flower and their aroma characteristics during flowering are scarce. In this study, the odor characteristics of tea flower during blooming were comprehensively investigated by GC-MS, PCA, ACI determination and sensory evaluation.
View Article and Find Full Text PDFToxicol Rep
June 2025
School of Pharmacy, College of Health Sciences, University of Nizwa, Oman.
Lemongrass (Poaceae) is one of the aromatic plants with strong odors. Traditionally, lemon grass oil has been used for the treatment of many diseases such as gastrointestinal cramps, high blood pressure, high body temperatures, and fatigue, and is also considered an antibacterial and anti-diarrheal agent. Therefore, this study aims to investigate volatile active constituents and a few important biological activities of the volatile oil of lemongrass (Cymbopogon citratus) grown in Oman.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu, China.
Ethylene Oxide (EO), a volatile organic compound, has garnered considerable attention for its potential impact on human health. Yet, the ramifications of EO exposure on the cognitive functionality of the elderly remain unclear. The aim of this study is to determine whether EO exposure in the elderly correlates with cognitive function.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Molecular and Cellular Biology, University of California-Davis, Davis, CA, 95616, USA.
The Asian Citrus Psyllid (ACP), Diaphorina citri, severely threatens citrus production worldwide by transmitting the greening (= Huanglongbing)-causing bacterium Candidatus Liberibacter asiaticus. There is growing evidence that the push-pull strategy is suitable to partially mitigate HLB by repelling ACP with transgenic plants engineered to produce repellents and attracting the vector to plants with a minimal disease transmission rate. Species that pull ACP away from commercial citrus plants have been identified, and transgenic plants that repel ACP have been developed.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!