SARS-CoV-2 is an enveloped virus responsible for the Coronavirus Disease 2019 (COVID-19) pandemic. Here, single viruses were analyzed by atomic force microscopy (AFM) operating directly in a level 3 biosafety (BSL3) facility, which appeared as a fast and powerful method to assess at the nanoscale level and in 3D infectious virus morphology in its native conformation, or upon inactivation treatments. AFM imaging reveals structurally intact infectious and inactivated SARS-CoV-2 upon low concentration of formaldehyde treatment. This protocol combining AFM and plaque assays allows the preparation of intact inactivated SARS-CoV-2 particles for safe use of samples out of level 3 laboratory to accelerate researches against the COVID-19 pandemic. Overall, we illustrate how adapted BSL3-AFM is a remarkable toolbox for rapid and direct virus analysis based on nanoscale morphology.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8178396 | PMC |
http://dx.doi.org/10.1038/s41598-021-91371-4 | DOI Listing |
Vaccines (Basel)
December 2024
Hospital Universitário Cassiano Antônio Moraes da Universidade Federal do Espírito Santo (HUCAM-UFES/EBSERH), Vitória 29041-295, ES, Brazil.
Background/objectives: The effectiveness of COVID-19 vaccine in patients with immune-mediated inflammatory diseases (IMID) depends on the underlying disease, immunosuppression degree and the vaccine regimens. We evaluate the safety and immunogenicity of different COVID-19 vaccine schedules.
Methods: The SAFER study: "Safety and effectiveness of the COVID-19 Vaccine in Rheumatic Disease", is a Brazilian multicentric prospective observational phase IV study in the real-life.
Vaccines (Basel)
November 2024
Research Center for Emerging Viral Infections, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan.
The development of vaccines against RNA viruses has undergone a rapid evolution in recent years, particularly driven by the COVID-19 pandemic. This review examines the key roles that RNA viruses, with their high mutation rates and zoonotic potential, play in fostering vaccine innovation. We also discuss both traditional and modern vaccine platforms and the impact of new technologies, such as artificial intelligence, on optimizing immunization strategies.
View Article and Find Full Text PDFVaccines (Basel)
November 2024
Mutala Trust, Harare, Zimbabwe.
Background/objectives: The COVID-19 pandemic has significantly impacted global health, with varying vaccine effectiveness (VE) across different regions and vaccine platforms. In Africa, where vaccination rates are relatively low, inactivated vaccines like BBIP-CorV (Sinopharm) and Coronovac (Sinovac) have been widely used. This study evaluated the real-world effectiveness of licensed inactivated COVID-19 vaccines in Zimbabwe during a period dominated by Omicron variants.
View Article and Find Full Text PDFFront Immunol
January 2025
Grupo Inmunovirología, Facultad de Medicina, Universidad de Antioquia UdeA, Medellín, Colombia.
Background: Despite its proven effectiveness and safety, there are limited real-world data on CoronaVac's immunogenicity in children, especially in lower-income countries, particularly for SARS-CoV-2 variants. We present a real-world study evaluating CoronaVac's immunogenicity in Colombian children stratified by previous exposure to this virus.
Methods: 89 children aged 3-11 years were enrolled (50 Non-Exposed and 39 Exposed).
Food Environ Virol
January 2025
School of Environmental and Natural Sciences, Bangor University, Bangor, Gwynedd, LL57 2UW, UK.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!