Background: Few data exist concerning genotype-phenotype relationships in left ventricular noncompaction (LVNC).
Methods And Results: From a multicenter French Registry, we report the genetic and clinical spectrum of 95 patients with LVNC, and their genotype-phenotype relationship. Among the 95 LVNC, 45 had at least 1 mutation, including 14 cases of mutation in ion channel genes. In a complementary analysis including 16 additional patients with ion channel gene mutations, for a total of 30 patients with ion channel gene mutation, we found that those patients had higher median LV ejection fraction (60% vs 40%; P < .001) and more biventricular noncompaction (53.1% vs 18.5%; P < .001) than the 81 other patients with LVNC. Among them, both the 19 patients with an HCN4 mutation and the 11 patients with an RYR2 mutation presented with a higher LV ejection fraction and more frequent biventricular noncompaction than the 81 patients with LVNC but with no mutation in the ion channel gene, but only patients with HCN4 mutation presented with a lower heart rate.
Conclusions: Ion channel gene mutations should be searched systematically in patients with LVNC associated with either bradycardia or biventricular noncompaction, particularly when LV systolic function is preserved. Identifying causative mutations is of utmost importance for genetic counselling of at-risk relatives of patients affected by LVNC.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.cardfail.2021.01.007 | DOI Listing |
Adv Ther
January 2025
CSL Vifor, Glattbrugg, Switzerland.
Introduction: Chronic kidney disease-associated pruritus (CKD-aP) is a common, yet underdiagnosed condition among patients on hemodialysis. Considering the lack of established treatment pathways, we sought to evaluate the use of antidepressant, systemic antihistamines, or gabapentinoid medications among patients with CKD-aP in the year following pruritus assessment.
Methods: We included 6209 patients on hemodialysis in the analysis.
Pharmacogenet Genomics
February 2025
Department of Anesthesiology, Vanderbilt University Medical Center.
Objectives: We aimed to classify genetic variants in RYR1 and CACNA1S associated with malignant hyperthermia using biobank genotyping data in patients exposed to triggering anesthetics without malignant hyperthermia phenotype.
Methods: We identified individuals who underwent surgery and were exposed to triggering anesthetics without malignant hyperthermia phenotype and who had RYR1 or CACNA1S genotyping data available in our biobank. We classified all variants in the cohort using a Bayesian framework of the American College of Medical Genetics and Genomics and the Association of Molecular Pathologists guidelines for variant classification and updated the posterior probabilities from this model with the new information from our biobank cohort.
Mikrobiyol Bul
October 2024
İnönü University Faculty of Medicine, Deparment of Medical Microbiology, Malatya, Türkiye.
The increasing antibiotic resistance in Pseudomonas aeruginosa, responsible for both community-acquired and hospital-acquired infections, is of global significance. The primary mechanisms contributing to resistance development in P.aeruginosa include the increased activity of efflux pumps, decreased permeability of outer membrane porins and the production of carbapenemases.
View Article and Find Full Text PDFACS Infect Dis
January 2025
Kusuma School of Biological Sciences, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India.
Alphaviruses, a genus of vector-borne viruses in the family, encode a small ion-channel-forming protein, 6K, and its transframe variant (TF) during infections. Although 6K/TF have vital roles in glycoprotein transport, virus assembly, and budding, there is no mechanistic explanation for these functions. We investigated the distinct biochemical functionalities of 6K and TF from the mosquito-borne alphavirus, Chikungunya Virus.
View Article and Find Full Text PDFTheranostics
January 2025
School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang, China.
Ion channels, as functional molecules that regulate the flow of ions across cell membranes, have emerged as a promising target in cancer therapy due to their pivotal roles in cell proliferation, metastasis, apoptosis, drug resistance, and so on. Recently, increasing evidence suggests that dysregulation of ion channels is a common characteristic of cancer cells, contributing to their survival and the resistance to conventional therapies. For example, the aberrant expression of sodium (Na) and potassium ion (K) channels is significantly correlated with the sensitivity of chemotherapy drugs.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!