The inhibitory mechanism of natural soil colloids on the biodegradation of polychlorinated biphenyls by a degrading bacterium.

J Hazard Mater

Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of the Chinese Academy of Sciences, Beijing 100049, China.

Published: August 2021

In spite of extensive studies of soil model components, the role of natural soil colloids in the biodegradation of organic pollutants remain poorly understood. Accordingly, the present study selected Mollisol colloids (MCs) and Ultisol colloids (UCs) to investigate their effects on the biodegradation of 3, 3', 4, 4'-tetrachlorobiphenyl (PCB77) by Bradyrhizobium diazoefficiens USDA 110. Results demonstrated that both natural soil colloids significantly decreased the biodegradation of PCB77, which partly resulted from the significant decrease in the bioaccessibility of PCB77. Furthermore, the activity of Bradyrhizobium diazoefficiens USDA 110 was remarkably inhibited under the exposure to the two types of soil colloids, which was mainly ascribed to the inhibition of cell reproduction but not the lethal effect of reactive oxygen species. The calculated results from Ex-DLVO theory further indicated that the repulsion between UCs and biodegrading bacteria retarded the effective contact of cells with adsorbed PCB77 from UCs, resulting in the decline of the rate of cell reproduction. In general, the inhibition of MCs was limited to PCB77 bioaccessibility, whereas the negative effect of UCs was controlled by PCB77 bioaccessibility and the effective contact of cells with colloids. This study could provide implication for the enhancement of microbial remediation in contaminated soil.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jhazmat.2021.125687DOI Listing

Publication Analysis

Top Keywords

soil colloids
16
natural soil
12
colloids biodegradation
8
bradyrhizobium diazoefficiens
8
diazoefficiens usda
8
usda 110
8
cell reproduction
8
effective contact
8
contact cells
8
pcb77 bioaccessibility
8

Similar Publications

Soil-transmitted helminths (STH) are widespread, with Ascaris lumbricoides infecting millions globally. Malaria and STH co-infections are common in co-endemic regions. Artemisinin derivatives (ARTs)-artesunate, artemether, and dihydroartemisinin-are standard malaria treatments and are also known to influence the energy metabolism of parasites, tumors, and immune cells.

View Article and Find Full Text PDF

Rare earth elements (REEs) are emerging contaminants rendering potential risks in soils to environmental quality and human health. The causation between their geochemical signatures and contamination levels with parent rocks and soil properties are critical for REEs risk assessments, which are urgently needed globally. Thus, this study aimed to elucidate cause-and-effect among hydrofluoric-acid-digested total and ethylenediaminetetraacetic acid extracted bioavailable soil REEs and their contamination degree evaluated by pollution indices in 268 soil layer (horizon) samples from 50 soil profiles derived from felsic, intermediate, mafic, ultramafic, and sedimentary rocks in Taiwan.

View Article and Find Full Text PDF

Molecular Mechanisms of Humic Acid in Inhibiting Silica Scaling during Membrane Distillation.

Environ Sci Technol

January 2025

Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, P. R. China.

Membrane distillation (MD) efficiently desalinizes and treats high-salinity water as well as addresses the challenges in handling concentrated brines and wastewater. However, silica scaling impeded the effectiveness of MD for treating hypersaline water and wastewater. Herein, the effects of humic acid (HA) on silica scaling behavior during MD are systematically investigated.

View Article and Find Full Text PDF

Hapten prediction, monoclonal antibody preparation, and development of an immunochromatographic assay for the detection of fenamiphos.

J Hazard Mater

January 2025

International Joint Research Laboratory for Biointerface and Biodetection, and School of Food Science and Technology, Jiangnan University, Wuxi, PR China. Electronic address:

Fenamiphos (FENA) is an organophosphorus insecticide, and its residues in fruits, vegetables, and the environment have raised concerns. Therefore, it is very important to develop a simple, rapid, and accurate method for FENA detection. In this study, a novel FENA hapten was designed and predicted based on computer-aided simulation technology, and high-performance anti-FENA monoclonal antibodies were screened using a matrix effect-enhanced screening method, with a half-maximal inhibitory concentration of 1.

View Article and Find Full Text PDF

This study investigates the negative impact of climate change on water resources, specifically water for agricultural irrigation. It describes how to optimize swelling, gel properties and long-term water retention capacities of Na-CMC/PAAm hydrogels for managing drought stress of Sugar beet plants through techniques such as changing the composition, synthetic conditions and chemical modification. Gamma radiation-induced free radical copolymerization was used to synthesize superabsorbent hydrogels using sodium carboxymethyl cellulose (Na-CMC) and acrylamide (AAm).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!