This study evaluated the methanogenic performance of typical substrates (acetate, formate, H/CO, and glucose) under low and high ammonia levels and the Anaerobic Digestion Model No.1 (ADM1) was extended and modified for better simulation and understanding of the process. Formate-utilizing and hydrogen-utilizing methanogenesis showed stronger ammonia resistance than acetate-utilizing methanogenesis (13-23% vs. 34% decrease in methane production (MP)). Model extension, based on foundational experiments fed with three typical precursors (R > 0.92), was then validated with glucose degradation experiments, and satisfactory predictions of MP and total volatile fatty acids were obtained (R > 0.91). Based on the modified ADM1, the carbon fluxes of glucose degradation were determined, and formate-utilizing methanogenesis showed its importance with a 28-34% contribution of the total methanation, becoming the dominant pathway under high ammonia level. Formate-utilizing methanogenesis also had a thermodynamic advantage among the three pathways. 16S rRNA sequencing suggested a homology between the hydrogen-utilizing and formate-utilizing methanogens. Methanobacterium and Methanobrevibacter were found to be key methanogens, and their enrichment under high ammonia level confirmed the stronger ammonia tolerance of formate-utilizing and hydrogen-utilizing methanogenesis. The microbial characterization and modified ADM1 simulations supported each other.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.scitotenv.2021.147581 | DOI Listing |
World J Microbiol Biotechnol
January 2025
Key Laboratory for Humid Subtropical Eco-Geographical Processes of the Ministry of Education, School of Geographical Sciences, Fujian Normal University, Fuzhou, China.
Nitrification, the oxidation of ammonium to nitrate via nitrite, links nitrogen fixation and nitrogen loss processes, playing key roles in coastal nitrogen cycle. However, few studies have simultaneously examined both ammonia-oxidizing and nitrite-oxidizing microbes. This work investigated the abundance and community structure of ammonia-oxidizing archaea (AOA), ammonia-oxidizing bacteria (AOB), and nitrite-oxidizing bacteria (NOB) using archaeal amoA gene, bacterial amoA gene, and NOB nxrB gene, respectively, through q-PCR and Sanger sequencing along the Changjiang Estuary salinity gradient.
View Article and Find Full Text PDFACS Sens
January 2025
Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea.
Semiconductor metal oxide (SMO) gas sensors are gaining prominence owing to their high sensitivity, rapid response, and cost-effectiveness. These sensors detect changes in resistance resulting from oxidation-reduction reactions with target gases, responding to a variety of gases simultaneously. However, their inherent limitations lie in selectivity.
View Article and Find Full Text PDFAnalyst
January 2025
Guangdong Provincial Key Laboratory of Electronic Functional Materials and Devices, Huizhou University, Huizhou, 516007, China.
Disordered polymerization of polymers widens the polymerization degree distribution, which leads to uncontrollable thickness and significantly weakens their sensing performance. Herein, poly(sodium -styrenesulfonate)-functionalized reduced graphene oxide (PSS-rGO) with multichannel chain structures coated with thin polyaniline layer (PSS-rGO/PANI) nanocomposites was synthesized a facile interfacial polymerization route. The morphology and microstructure of the PSS-rGO/PANI nanocomposites were characterized using Fourier transform infrared (FTIR) spectroscopy, Raman spectroscopy, X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and scanning electron microscopy (SEM).
View Article and Find Full Text PDFNatl Sci Rev
February 2025
Key Laboratory of Precision and Intelligent Chemistry, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei 230026, China.
Ion exchange membranes (IEMs) enable fast and selective ion transport and the partition of electrode reactions, playing an important role in the fields of precise ion separation, renewable energy storage and conversion, and clean energy production. Traditional IEMs form ion channels at the nanometer-scale via the assembly of flexible polymeric chains, which are trapped in the permeability/conductivity and selectivity trade-off dilemma due to a high swelling propensity. New-generation IEMs have shown great potential to break this intrinsic limitation by using microporous framework channels for ion transport under a confinement regime.
View Article and Find Full Text PDFBiofuels derived from renewable and sustainable lignocellulosic biomass, such as switchgrass, offer a promising means to limit greenhouse gas emissions. However, switchgrass grown under drought conditions contains high levels of chemical compounds that inhibit microbial conversion to biofuels. Fermentation of drought switchgrass hydrolysates by engineered and generates less ethanol than fermentation of hydrolyzed switchgrass from an average rainfall year.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!