Carboxylesterases (CEs) are members of prominent esterase, and as their name imply, they catalyze the cleavage of ester linkages. By far, a considerable number of novel CEs have been identified to investigate their exquisite physiological and biochemical properties. They are abundant enzymes in nature, widely distributed in relatively broad temperature range and in various sources; both macroorganisms and microorganisms. Given the importance of these enzymes in broad industries, interest in the study of their mechanisms and structural-based engineering are greatly increasing. This review presents the current state of knowledge and understanding about the structure and functions of this ester-metabolizing enzyme, primarily from bacterial sources. In addition, the potential biotechnological applications of bacterial CEs are also encompassed. This review will be useful in understanding the molecular basis and structural protein of bacterial CEs that are significant for the advancement of enzymology field in industries.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.colsurfb.2021.111882 | DOI Listing |
PLoS Negl Trop Dis
December 2024
Department of Veterinary Anatomy and Pathology, College of Veterinary Medicine and Biomedical Sciences, Sokoine University of Agriculture, Morogoro, Tanzania.
Background: Brucellosis poses serious public health implications and substantial economic losses in pastoral rural settings in South Sudan. In humans, brucellosis is almost always originating from animals. Current literature provides scant data regarding the seroprevalence of brucellosis in South Sudan.
View Article and Find Full Text PDFGenome Med
December 2024
Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, 77030, USA.
Background: MECP2 Duplication Syndrome, also known as X-linked intellectual developmental disorder Lubs type (MRXSL; MIM: 300260), is a neurodevelopmental disorder caused by copy number gains spanning MECP2. Despite varying genomic rearrangement structures, including duplications and triplications, and a wide range of duplication sizes, no clear correlation exists between DNA rearrangement and clinical features. We had previously demonstrated that up to 38% of MRXSL families are characterized by complex genomic rearrangements (CGRs) of intermediate complexity (2 ≤ copy number variant breakpoints < 5), yet the impact of these genomic structures on regulation of gene expression and phenotypic manifestations have not been investigated.
View Article and Find Full Text PDFJ Food Sci
December 2024
Instituto de Investigación para el Desarrollo Sustentable de Ceja de Selva (INDES-CES), Universidad Nacional Toribio Rodríguez de Mendoza, Chachapoyas, Amazonas, Peru.
J Microbiol Biotechnol
November 2024
Shanghai Veterinary Research Institute, the Chinese Academy of Agricultural Sciences (CAAS), 518 Ziyue Road, Shanghai 200241, P.R. China.
Anal Chem
December 2024
Collaborative Innovation Centre of Henan Province for Green Manufacturing of Fine Chemicals; Key Laboratory of Green Chemical Media and Reactions, Ministry of Education; Henan International Joint Laboratory of Smart Molecules and Identification and Diagnostic Functions; School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, P. R. China.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!